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Abstract 

 

In this thesis I analyze heterogeneity in the effect of small classes by estimating 

the small class quantile treatment effects.  I use data from Project STAR, a Tennessee 

random assignment experiment, and address possible biases caused by non-random 

switching and attrition.  I find that small classes have a positive effect on all quantiles of 

the test score distribution in kindergarten and first grade.  Moreover, I find substantial 

heterogeneity in the effect, which is about two times as large on the upper end of the 

distribution as on the lower end.  I also find mild evidence that the small class effect is 

larger for non-white and low income students conditional on achievement.  
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1.  Introduction 

  

Making education more efficient and equitable are two key goals of policymakers, 

as education is seen as a way both to increase output and to provide equal opportunities 

for economic success.  In order to determine how to allocate scarce resources to meet 

these goals, policymakers since the 1960s have looked to empirical estimates of the effect 

of these inputs on various measures of achievement.
1
   

Among these educational inputs, class size reduction has commonly been seen as 

an effective way to enhance outcomes, due in part to the conventional wisdom that 

smaller classes increase resources per student and that this translates into academic 

success.  Given the desirability of school reform and the intuitive appeal of smaller 

classes, it is no surprise that much research has been done to estimate the class size effect.  

Starting with the Coleman Report (1966), empirical research has produced mixed results 

in both sign and magnitude (Krueger 1999).  This research was hampered by the likely 

endogeneity of class size and academic achievement.  In an effort to avoid this problem, 

researchers in Tennessee implemented Project STAR (Student/Teacher Achievement 

Ratio), an experiment in which students were randomly assigned to small or large classes 

and their academic performance was tracked.   

Analysis of the STAR results, as well as the majority of previous class size 

research, has focused on estimating the average effect of smaller classes.  The average 

effect gives only limited information about the distribution of effects except in the under 

the assumption that the effect is the same for all students.  This is a strong a priori 

assumption.  If small class size allows teachers to focus more on needy students (as in 

                                                 
1
 As noted in Krueger (1999), economists tend to look at income while education researchers tend to look at 

test scores. 
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Betts and Shkolnik (1999)) then the effect of smaller class size would be larger for these 

students.  Similarly, if classes with more lower achieving students are more disruptive 

and smaller classes reduce opportunities for disruption (as in Lazear (2001)) then lower 

achieving students might benefit more from class size reductions.  Alternatively, 

disruptive environments might hurt better students more, so reducing disruptions might 

have a larger benefit for higher performing students. 

If the small class effect is varies by achievement, then the average effect does not 

answer questions about equity because it does not indicate who benefits from the 

reductions (Heckman and Smith (1997) and Levin (2001)).  If policymakers are 

concerned with these equity questions, then the preferred educational policy depends on 

the distribution of benefits.  For instance, policymakers might be particularly interested in 

class size’s effect on lower achieving students.  Class size could have a large average 

effect while giving little benefit to these students.  In this case, the average effect would 

overstate the extent to which reductions achieve the equity goals of policymakers.   

In this thesis, I use data from the STAR experiment to examine the heterogeneous 

effects of small classes.
2
  I do so by estimating the class size effect on various quantiles 

of the conditional test score distribution.  While several researchers
3
 have estimated 

heterogeneous class size effects before, they use non-experimental data that necessitate 

more complicated and less reliable econometric techniques to avoid selection bias.   

I address the aspects of the STAR that could bias the results.  Attrition is the most 

important of these, and I adjust for it using propensity score weights.  Contrary to the 

previous work on heterogeneous effects, I find significant positive effects of class size at 

                                                 
2
 The STAR data are available online at http://www.heros-inc.org/data.htm 

3
 Edie and Showalter (1998), Levin (2001), and Ma and Koenker (2006) 
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each quantile.  Further, I find significantly larger effects on the upper tail of the 

conditional test score distribution and significantly smaller effects on the lower tail.    

 This thesis proceeds as follows.  Section 2 summarizes the previous research on 

class size in greater detail.  Section 3 describes the STAR experiment and data.   Section 

4 introduces quantile treatment effects and discusses the difficulties in using the STAR to 

estimate them.  Section 5 discusses the econometric model and presents the initial results.  

Section 6 discusses the interpretation of the results from section 5.  Section 7 addresses 

the issue of sample attrition and presents results from an adjustment for non-random 

attrition.  Section 8 addresses the possibility of differences in the quantile treatment 

effects based on race, income, and teacher experience.  Section 10 concludes. 

 

2. Background  

 

The earliest empirical estimates of the class size effect used ordinary least squares 

and failed to account for the likely endogeneity of class size and performance.  For 

instance, suppose wealthier or more motivated parents are more likely to enroll their 

students in schools with smaller classes.  The same parents are more likely to encourage 

their children to work more diligently and learn outside of class.  If this is the case, then 

parental characteristics are positively correlated with both class size and achievement. 

Since the parental characteristics are unobserved, they were not controlled for in the 

analyses and thus the estimates were likely biased upwards.  Similarly, teacher quality 

may be determined in part by class size, with better teachers opting to teach smaller 

classes.  This would also bias the results.  Though an array of methodologies including 
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instrumental variables has been used adjust for selection bias, the literature has not 

generated a consensus on the magnitude (or even the sign) of the small class effect.
4
    

When the Tennessee legislature funded the STAR experiment starting in the 

1985-86 school year, researchers hoped to avoid the selection bias issue altogether.  In 

the experiment, schools from across the state created small, regular, and regular with TA 

classes.  Kindergarten students were randomly assigned to one of these class types 

through third grade and their achievement was measured with standardized tests at the 

end of each year.  Teachers were also randomly assigned.   

Krueger (1999) uses the data from this experiment to estimate the average effect 

of smaller classes on test scores.  He explores the possible biases introduced by 

measurement error, non-random switching, and attrition.  He finds these potential biases 

to be small, and accounting for them he finds that a class size reduction from 22 to 15 

students raises the average test score by 5.37 percentiles (about .2 standard deviations).  

Krueger (2001) follows up this analysis by estimating the effect on later test results; he 

finds a smaller but still positive effect on middle school test performance and on the 

probability of taking a college entrance exam.   

Krueger estimates the “average treatment effect” (ATE) of small classes.  This 

parameter is the difference in average test scores between students in various class sizes.  

The average effect provides only limited information on the distribution of effects across 

individuals, except under the assumption that the effect is the same for all students.  In 

the presence of heterogeneous program effects, the ATE does not answer many relevant 

evaluation questions.   

                                                 
4
 Hanushek (2003) and Krueger (2003) offer competing summaries of the class size literature.  Hanushek 

claims the results are entirely inconclusive, while Krueger contests that a majority of studies show at least 

positive effects. 
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One way to address heterogeneity is to compute the ATE for various subgroups 

defined by observable characteristics such as income and race.  This is the approach 

taken by Krueger in his STAR analyses.  While one might expect the effect to differ 

based on these characteristics, the scenarios mentioned in section 1 suggest that the effect 

might be heterogeneous with respect to achievement.  To the extent that demographic 

characteristics are correlated with achievement, the subgroup ATEs will give some sense 

of this heterogeneity.  However, this is an indirect and less than ideal method for 

estimating heterogeneity that is based on achievement. 

 A more direct way to estimate heterogeneity with respect to achievement is to 

estimate the quantile treatment effects (QTEs).  The QTE is the effect of a program on a 

given quantile of the achievement distribution.  In other words, the QTE for a given 

quantile is the difference between that quantile of the treatment and control distributions.  

Just as quantiles complement the mean in describing the shape of a distribution, QTEs 

complement the ATE in describing a program’s effect on the distribution of outcomes.   

Ideally, experiments allow for straightforward estimates of the QTEs in the same 

way they allow for straightforward estimates of the ATE.  However, previous estimates 

of the class size QTEs have not exploited the STAR data.  Eide and Showalter (1998), 

Levin (2001), and Ma and Koenker (2006) use non-experimental data to estimate these 

quantile effects.  Eide and Showalter (1998) use US data and find that the effect is not 

statistically different from zero at any quantile.  However, they treat class size as 

exogenous and thus encounter the same problems as the earlier average effect research.   

Levin (2001) estimates the quantile effects using an instrumental variable 

approach to get around the endogeneity issue.  His instrument is a Dutch Ministry of 
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Education rule that relates funding for teachers to total school enrollment.  He groups 

classes into six size categories and finds that the small-class effects for 4
th

, 6
th

, and 8
th

 

grade are mostly insignificant.  For math scores in 8
th

 grade, he finds a negative effect of 

smaller classes on the middle of the distribution; moving into the next larger class size 

category increases the .25 quantile of scores by 1.05 percentiles, the median of scores by 

1.52 percentiles, and the .75 quantile of scores by .99 percentiles.  For language scores, 

the effect is only significant for the .25 quantile, with movement into the next larger class 

size category increasing the .25 quantile of scores by .84 percentiles.  Levin also finds 

that there is a positive and significant “peer effect” that is enhanced by smaller class size.  

However, he finds that this effect is only strong on the top of each test score distribution.   

Ma and Koenker (2006) re-analyse the Dutch data using a methodology designed 

to measure the quantile effects of marginal class size reductions rather than creating a 

small number of class size categories. Their results are similar to Levin’s. 

Since these papers use non-experimental data, they focus on correcting for the 

problem of endogeneity of class size and educational performance.  The STAR 

experiment provides an opportunity to estimate quantile effects while avoiding the most 

serious endogeneity issues that are the focus of these methodologies.  

 

3. Data 

 

Project STAR was legislated by the Tennessee government and carried out by 

researchers from the state’s four universities (Tennessee State, Memphis State, the 

University of Tennessee, and Vanderbilt).  In the experiment, students were randomly 

assigned students to small classes (13-17 students), regular classes (22-25), or regular 
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classes with teacher assistants from kindergarten through 3
rd

 grade.  Since my focus is on 

class size and since previous research has found that the effect of TAs is insignificant, I 

will only use the regular and small class data for my analysis.  I also restrict my analysis 

to kindergarteners and first graders who were also in the STAR in kindergarten for 

reasons discussed in the next section. 

Teachers were also randomly assigned to one of the three class types.  Seventy-

nine schools participated in the experiment.  These schools are not a random sample, as 

they had to meet criteria such as size (large enough to have three classes in grades K-3) 

and location (the legislation required representation of inner city, urban, suburban, and 

rural schools).  Because of this, inner city schools and minorities were overrepresented. 

Achievement was measured by tests administered at the end of each year.  

Students took Stanford Achievement Tests (SATs) in math, reading, and word skills.  I 

do not discuss the word skills results for two reasons.  First, the test is not effective at 

differentiating students at the high end of the distribution: in first grade, over 10% of 

students have the highest score possible, which forces the estimates on all .9 quantile 

estimates to zero.  Second, word skills is highly correlated with reading (sample 

correlation is .91 in both years).  Thus the estimates are very similar for the two tests at 

all quantiles other than the .9
th

. 

For my analysis, I re-scale the test scores in order to compare the effects of small 

classes in each grade.  Standard deviation units are the most straightforward.  However, 

the sample of students is different in each year due to an influx of new students in first 

grade and attrition following kindergarten.  For comparability, then, I the units should be 

standard deviations of the scores of the same group of students for both years.  To do this, 
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for both grades I scale the scores by subtracting the mean score of the group of students 

who have scores for both tests in both grades and then divide by the standard deviation of 

the scores of the same group of students.  The units in the analysis (standard deviations of 

the scores of students who have scores for both years) are now consistent for both grades.   

Figure 3.1 shows kernel density estimates of the regular and small class 

kindergarten and first grade distributions of each test.  The small class distribution is 

higher than the regular class distribution for both tests in both years.  This illustrates that 

small class size has a positive ATE.  Since the treatment and control distributions have 

some differences in shape, we might suspect that the effect differs by quantile.   

Table 3.1 presents summary statistics for the treatment and control groups of 

kindergarteners and first graders who were in STAR in kindergarten.  There are no pre-

experiment test scores, so it is impossible to determine if the kindergarten groups are 

similar along this dimension.  However, the two kindergarten groups are similar in other 

characteristics.  Only a slightly higher percent (.6%) of regular class students received 

free school lunch and only a slightly higher percent (1%) of small class students are 

white.  Age is also very similar.  The p-values in the right-most column confirm that the 

treatment and control groups are not statistically significantly different along these 

dimensions, suggesting that random assignment is a reasonable assumption for 

kindergarten.  The treatment-control differences in test scores are approximately the 

ATEs.   

Two aspects are noticeable about the first grade group.  First, there is a high rate 

of attrition: 500 small class students (26%) and 668 regular class students (30%) leave 

STAR after kindergarten.  Second, the treatment and control groups of these students 
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look different in observable characteristics both from each other and from the overall 

kindergarten treatment and control groups.  From this, we should be concerned that 

attrition is non-random and systematically different for small and regular class students.  I 

address this issue in section 6. 

 

4. Treatment effect framework 

 

As previously discussed, I will explore heterogeneity in the small class effect by 

estimating the quantile treatment effects.  The relationship between the QTEs and the 

ATE is analogous to the relationship between the quantiles and the mean of a 

distribution.  In subsection 4.1, I formally review the average treatment effect and 

introduce the quantile treatment effects.  I also discuss how the ideal experiment 

identifies both parameters.  Subsection 4.2 overviews the differences between the STAR 

and the ideal experiment and outlines how I will address them.   

4.1. Treatment effects and their experimental identification 

 

I define the treatment effects using the potential outcomes notation.
5
  Let T denote 

participation status with Ti=1 if individual i (or, more realistically, i’s parents) selects to 

be in a small class and Ti=0 otherwise.  Let Yi(1) and Yi(0) denote i’s outcomes in a 

small class and regular class, respectively. In evaluating the effect of small classes on any 

individual, we want to know Yi(1)-Yi(0).  

The evaluation problem is that we can only observe Yi(1) or Yi(0), but not both, 

for any individual.  We can, however, attempt to estimate E[Y(1)|T=1] - E[Y(0)|T=1]; 

                                                 
5
 See Djebbari and Smith (2008) for a footnote discussion on attributing the potential outcomes framework. 
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this is the average treatment effect.
 6

  The ATE can be estimated by constructing a 

comparison group of non-participants and comparing the average of the marginal 

distributions E[Y(1)|T=1] – E[Y(0)|T=0].  Due to self-selection into the program, 

however, T and Y will likely be correlated, so that E[Y(0)|T=0] and E[Y(0)|T=1] are not 

equal and the results are biased.  The difference between the terms is the selection bias. 

The quantile treatment effects are similar to the ATE.  For a given quantile p, the 

QTE is defined as p(Y(1)| T=1) – p(Y(0)| T=1).  In the non-experimental setting,     

p(Y(0)| T=1) is unobservable.  If one were to use p(Y(0)| T=0) in its place, the difference 

between the two would be the selection bias.   

If the selection decision is a function of observable characteristics, then we can 

construct a group of non-participants such that the selection bias is zero.  On the other 

hand, if selection is a function of unobservable characteristics, as class size is likely to be 

(see previous sections), then selection bias remains a concern.  Ideally, a random-

assignment experiment such as the STAR overcomes this issue.  Since all individuals in 

the experiment select to participate, Ti=1 for all i.  By randomly not treating individuals, 

the ideal experiment provides marginal distributions of (Y(0)|T=1) and (Y(1)|T=1).  The 

ATE and the QTEs can thus be estimated by comparing the averages and quantiles of 

these two distributions. 

Even with unbiased estimation, the QTEs are difficult to interpret because the 

relationship between the QTEs and the effect on individuals at each quantile is unclear 

(Heckman and Smith (1997)).  The difference in the quantiles tells us how small class 

                                                 
6
 In previous literature, this effect has instead been labeled the “average treatment effect on the treated” 

(ATT or ATET), in contrast to the “overall average treatment effect.”  Since the second is a special case of 

the first, I will refer to the average treatment effects simply as the ATE and quantile treatment effects as the 

QTEs. 
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size affects the shape of the distribution; it does not necessarily tell us the small class 

effect for an individual at a given quantile of the untreated distribution.  For example, a 

student at the upper tail of the treatment distribution might (counterfactually) be in the 

middle of the control distribution.  Similarly, if the entire distribution shifts upwards as a 

result of treatment, we cannot conclude that no individual was negatively affected by 

treatment.  If the two distributions overlap, it is possible that an individual at the lower 

tail of the treatment distribution would have a higher rank in the control distribution in 

such a way that her score was negatively affected by treatment.    

More generally, the marginal distributions Y(0) and Y(1) give us only limited 

information about the joint distribution (Y(0),Y(1)).  The difference between the pth 

quantiles of the conditional distributions will only yield the effect on a student at that 

quantile if a student would be in the pth quantile regardless of treatment status; that is, if 

Yi(1) is at the same quantile as Yi(0) for all i.  This independence of rank from treatment 

status is known as rank preservation. 

Though rank preservation is a strong assumption, in the case of small classes we 

might intuitively expect a fairly high dependence between the rank of Yi(1) and that of 

Yi(0) for any individual i.  A student at the lower tail of the distribution in regular classes 

would not likely jump to the top, or even the median, of the distribution in small classes.  

If rank preservation does hold, then the QTEs are the effects on individuals at a given 

quantile rather than simply the effect on that quantile of the distribution.  

4.2. How the STAR differs from the ideal experiment  

So far, this section has discussed how the QTEs are identified with an ideal 

experiment.  As with many social experiments, there are several ways in which the STAR 
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experiment diverges from this ideal.  These issues were first addressed in Krueger (1999), 

and I discuss them in this section. 

First, there was re-randomization between regular and regular with TA classes 

after Kindergarten.  Krueger points out that if constancy of peers is an important 

determinant of achievement, the estimates might be biased after kindergarten.  Second, 

there is the possibility of non-random switching between class types after the initial 

assignment.  This issue appears to be trivial for kindergarten, as Krueger calculates that 

only .3% of students switched class type between their assignment and the start of the 

school year. However, there was switching after Kindergarten.  108 students (6.25% of 

small class students) switched from small to regular classes while 126 (6.30% of regular 

class students) switched from regular to small classes.  Students who switch to regular 

classes have an average kindergarten reading SAT of -.28 while students who switch to 

small classes have an average kindergarten reading SAT of -.09, compared to the overall 

kindergarten average of -.12.  This suggests that switching is non-random and thus first 

grade class size is non-random.  Using first grade class type as the independent variable 

will therefore bias the first grade results.  Instead, I will use kindergarten class type as the 

independent variable for my first grade analysis, thereby estimating the reduced form of 

the model.  Switching will bias the average effect estimate downwards.
7
       

A third issue with the STAR experiment is that students join and leave the 

experiment every year.  26% of students leave after kindergarten, and by 3
rd

 grade 50% 

of the original kindergarten students have left.  These students are replaced with new 

students who join each year.  Since the problems of attrition and entry become 

                                                 
7
 Depending on where in the distribution the students switch, the estimates at each quantile will be biased 

differently. See section 6 for further discussion. 
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compounded every year, and since there is evidence that attrition between kindergarten 

and first grade and between kindergarten and later grades is a different phenomenon, I 

choose not to estimate the effects for second and third grade.
8
  I still estimate the effect in 

first grade for students who were in STAR in kindergarten in order to see if there is 

“value added” from additional years of small classes.  

A fourth way in which the STAR diverges from an ideal experiment is in its 

treatment population.  The QTEs are estimates of the effects on a particular treatment 

population (the population for whom T=1).  The question is, for which population do we 

want to know the effects of class size reductions, and for which population does the 

STAR identify the QTEs?  If policymakers (say, in the US) want to reduce class sizes 

state-wide or nationally, then the parameter of interest is the effect on the overall student 

population in Tennessee or the US, respectively.  Non-experimental analyses, on the 

other hand, estimate the effect on the population of students who select into small classes.  

This population likely is not representative of the overall students population; the 

problem of selection bias arises precisely because the two groups differ ((Y(0)|T=1) ≠ 

(Y(0))).   

The STAR experiment potentially has a benefit over non-experimental data in that 

its treatment sample is better representative of the overall student population than is the 

non-experimental treatment population.  This is because school choice is not entirely 

determined by class size.  School characteristics such as teacher quality and peers are 

probable determinants of school choice.  In the non-experimental setting, therefore, the 

small class treatment population also receives many other “treatments” associated with 

                                                 
8
 This is revealed by a comparison of probit regressions for the probability of leaving immediately after 

kindergarten against those for the probability of leaving after 1
st
 or 2

nd
 grade.  The coefficients on 

kindergarten test score and small class type differ in size and magnitude. 
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better schools.  STAR schools do not include these other benefits, so parents are not 

likely to be indifferent between STAR schools and non-experiment schools with small 

classes.  Moreover, since assignment is random, parents know that their child has less 

than a 50% chance of actually participating in a small class.  If the decision to enroll in 

STAR schools is completely independent of the fact that small classes are introduced, and 

if these schools are a representative sample, then the treatment sample is representative of 

the overall population: Y(0)|TSTAR = Y(0).  In this case, the QTEs from the STAR data 

would be the overall QTEs.   

Unfortunately, the STAR experiment does not quite meet these assumptions in 

three ways.  First, it is possible that the potential of small-class enrollment influenced 

parents’ decisions.  Second, since kindergarten was optional in Tennessee at the time, the 

sample I use in my analysis is probably not representative.  Third, as we have already 

seen, the schools are not representative of either the state or of the country.  Therefore the 

estimates QTEs are not quite the overall QTEs and not quite the QTEs on the population 

that selects into small classes in the non-experimental setting. 

    

5. Estimation and results 

 

5.1. Estimating the QTEs using quantile regression 

 

I estimate the QTEs using the quantile regression method (QRM).
9
  Whereas 

linear regression estimates the conditional mean of the response variable, quantile 

regression estimates conditional quantiles of the response variable.     

                                                 
9
 See Hao and Naiman (2007) and Koenker (2001) for further information on quantile regression. 
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For a given quantile τ, the QRM minimizes weighted deviations of dependent 

variable yi from the conditional τth quantile ξ, which is a function of covariates xi. The 

deviations are weighted by the ρτ(.) operator, which is defined as 

ρτ(u) = τ*u        if u>0 

 (1-τ)*u  if u<0    

 

The QRM estimates β, the vector of coefficients describing the relationship between x 

and ξ, the conditional τth quantile of y.  Thus it minimizes (over β) 

∑ρτ(yi - ξ(xi, β)). 

 

For a given τ, the QRM will estimate the effect that being assigned to a small 

class has on the τth quantile of the test score distribution.  The QRM thus provides 

estimates of the QTEs.  As discussed above, the random assignment experiment should 

provide the marginal distributions, in which case I can obtain unbiased estimates of the 

QTE with the straightforward specification 

Yi = β0
(τ)

 + β1
(τ)

SMALLi + εi
(τ)

, 

 

where SMALL is an indicator for small class size in kindergarten and the pth quantile of 

ε is zero.
10

 To capture the effects across the distribution, I estimate the above 

specification for each τ in {.1, .25, .5, .75, .9}.   

I also estimate specifications that control for observable characteristics for two 

reasons.  First, there is the possibility that assignment was not completely random.  

Though Krueger (1999) shows that both student and teacher assignment are not strongly 

predicted by any observable characteristics, this is still consistent with a small degree of 

non-randomness in assignment.  Second, even with random assignment, there will be 

some sample correlation between small class and observable variables.  Because of this, I 

                                                 
10

 Since heterogeneous effects require heteroskedastic residuals, I use bootstrapped standard errors for the 

estimated coefficients.   
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can increase the precision of the SMALL coefficient estimates by controlling for these 

observable characteristics.  Therefore for each τ I also estimate 

Yi = β0
(τ)

 + β1
(τ)

Xi + β2
(τ)

SMALLi + εi
(τ)

, 

 

where Xi is a vector of school, teacher, and demographic characteristics for individual i.   

My main specifications also include school fixed effects because randomization occurred 

within schools.   

Ignoring attrition for now, the interpretation of the results is the following. The 

coefficient on SMALL at each quantile is the estimate of the QTE for that quantile.  For 

kindergarten, this will be the one-year effect of small classes on performance.  For first 

grade, this effect will be the cumulative effect of two years of small classes on 

performance.  That is, it will include the effects from the first and second years.  To 

isolate the effect of the second year, I include previous year’s test score as a control in 

one set of regressions.  For these regressions, the coefficient on SMALL is the marginal 

effect of the second year of small classes.  

5.2.  Results 

  

Table 5.1 displays the estimates of the coefficient on SMALL.  The units are 

standard deviations of the test scores of students who have scores for both years.  Table 

5.2 shows the p-values from Wald tests that the coefficients on SMALL for the two 

quantiles in each row are equal.   

Table 5.1a presents the kindergarten results. Column 1 shows the results for math 

score with no controls or school effects, Column 2 the results with controls but no school 

effects, Column 3 the results with school effects and no other controls, and Column 4 the 

results with school effects and other controls.  Each column also displays the 
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corresponding OLS estimate of the ATE, which are roughly equal to Krueger’s (1999) 

estimates.  In each of these columns, the coefficients are positive and significant for each 

estimated quantile (the 10
th

 percentile of math scores is the one exception).  This suggests 

that smaller class sizes are beneficial for all kindergarten students in math.    

Additionally, with few exceptions, in the first four columns the point estimates 

and confidence intervals shift upwards as quantile increases.  Comparing columns 1 and 2 

and columns 3 and 4, the results do not change significantly when controlling for 

observable student, teacher, and school characteristics.  For reference, Table 5.3 shows a 

summary of the coefficient estimates on the controls from the regression in Column 4 of 

Table 5.1.  The student controls include student gender, race, age, and whether the 

student received free lunch, repeated kindergarten, or received special education or 

special instruction.
11

  There is also a variable for how many days of the school year the 

student was present.  The teacher controls include indicators for whether the teacher was 

in her first three years, whether she held an advanced degree, and whether she was black.  

The school controls include indicators for school location: inner city, suburban, and 

urban.  Rural is the omitted indicator.     

Column 3 shows that without these controls (but with school effects), the 

estimates range from .11 standard deviations for the 10
th

 percentile to .26 standard 

deviations for the 90
th

 percentile.  When the controls are included, the estimates have a 

similar range from .11 standard deviations for the 10
th

 percentile to .31 standard 

deviations for the 90
th

 percentile.  Table 5.2 shows that in both cases the estimates for 

bottom three quantiles are significantly different from the top two.  This means that the 

                                                 
11

 There are no data on repeat, special education, or special instruction for first grade. 
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effect of small classes is significantly larger on the top of the distribution than on the 

middle and bottom. 

Figure 5.1 provides a graphical view of the results from the Column 4 

specification estimated for each percentile.   Small class coefficient estimate is on the y 

axis and quantile is on the x axis.  The grey band is the bootstrapped 90% confidence 

interval, the dashed line is the OLS estimate, and the dotted lines are the bounds of the 

90% confidence interval of the OLS estimate.  The upward slope shows that the estimate 

increases as quantile increases; in other words, the small class effect on math scores is 

larger on the top of the distribution than on the bottom.   

Columns 5 through 8 of Table 5.1a show that small classes have similar effects on 

the distribution of reading scores.  All of the estimates are positive and significant and 

range from around .10 standard deviations for the 10
th

 percentile to between .2 and .28 

standard deviations for the 90
th

 percentile.  Without school effects, the only statistically 

significant difference is between the 10
th

 and 75
th

 percentile estimates with no controls.  

With school effects, the results are more heterogeneous and significantly different for the 

bottom two and top two quantiles.  As with math, class size has larger effects on the 

higher end of the distribution and smaller effects on the lower end of the distribution.  

This is contrary to Levin’s (2001) result that small classes have different effects for 

different tests.  

Tables 5.1b and 5.1c show the estimates of the two year and marginal first grade 

effects, respectively.  Again, the estimates are those for the coefficients on small class 

size in kindergarten.  Columns 1 and 5 shows the estimates with no controls, columns 2 

and 6 the estimates with controls, columns 3 and 7 the estimates with no controls except 
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kindergarten test score, and columns 4 and 8 the estimates with controls including 

kindergarten test score.  The estimates in Table 5.1c are mostly positive and somewhat 

significant, showing that there is “value added” from an extra year of small classes.  

There is much less heterogeneity in this marginal effect, but given the smaller magnitude, 

this might be due to the larger relative standard errors of the estimates.  The estimates in 

Table 5.1b show that the heterogeneity persists in the cumulative effect.  The similarity in 

magnitude between the cumulative and kindergarten effects despite the first grade value 

added suggests that some of the kindergarten effect “wears off” before the end of first 

grade, though some of this is due to the switching between class types after kindergarten.              

Taken together, the estimates in Table 5.1 provide a picture of substantial 

heterogeneity in the effect of small classes.  Though the estimates are not always 

significantly different at different quantiles, they show an overall trend of a larger effect 

on the top of the distribution and a smaller effect on the bottom of the distribution; the 

effect on the top is between two and three times that on the bottom.  If rank preservation 

holds, the results show that small classes are better for better students.  The OLS results 

fail to capture this heterogeneity.  

  

6. Attrition 

 

The STAR design flaws and attrition potentially threaten the internal validity of 

the results in the early STAR analyses.  Krueger (1999) shows that the first several 

potential problems are minor.  Attrition, on the other hand, has not yet been addressed 

and therefore it presents the most serious threat to the validity of the above results.  

Krueger (1999) uses a (self-described) crude imputation to test the sensitivity of the 
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results to attrition.  With this imputation, his estimates of the average effect do not differ 

significantly.  However, attrition poses a more complex challenge to the QTE results than 

to the ATE results.  For this reason, I address the issue presently and attempt to do so 

more thoroughly.  Subsection 6.1 outlines the effects of attrition.  Subsection 6.2 presents 

the weighting method used to adjust for attrition and presents adjusted first grade results. 

6.1. Effects of non-random attrition 

If attrition is random, it will not bias the results.  However, Table 3.1 suggests that 

attrition is not random.  There are two different types of non-random attrition that 

confound the results in different ways.   

The first type is nonrandom attrition that is uncorrelated with class size.  This 

kind of attrition does not introduce bias.  However, it does change the estimated 

parameter by changing the population for which the QTEs are estimated.  As discussed in 

section 4.2, the STAR treatment sample is hopefully close to representative of the overall 

student population.  Attrition that is uncorrelated with class size increases the differences 

between the treatment sample and the overall population, increasing the difficulty of 

evaluating the estimates’ external applicability.  Further complicating the interpretation, 

there is no clear relationship between the QTE on a given quantile of the post-attrition 

distribution and the QTE on the same quantile of the unobserved no-attrition distribution 

since the direction and magnitude of the difference will be determined by the distribution 

of QTEs for the no-attrition distribution.  For example, suppose the effects on the 40
th

 and 

50
th

 percentiles of the no-attrition distribution are larger than the effect on the 46
th

 

percentile.  Now suppose students leave from the below the 40
th

 percentile of the 

treatment and control distributions in such a way that the 46
th

 percentiles of each original 
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no-attrition distribution become the 40
th

 percentiles of the distributions of remaining 

students and the original 50
th

 percentiles become the new 46
th

 percentiles.  Without 

adjusting for attrition, the estimate of the 40
th

 percentile effect will be smaller than the 

no-attrition 40
th

 percentile effect while the estimate of the 46
th

 percentile effect will be 

larger than the no-attrition 46
th

 percentile effect.   

The second type of nonrandom attrition is that which systematically differs by 

class type.  This kind of attrition does bias the estimates for each quantile.  As with the 

first type of nonrandom attrition, the direction of the bias at each quantile is unclear, and 

the quantile estimates will not necessarily be biased in the same direction or magnitude.  

If attrition is highly correlated with low test scores and regular class size, as we might 

infer from Table 3.1, then the magnitude of the bias at different quantiles will differ.  In 

this case it is possible that that attrition is driving the observed heterogeneity in the first 

grade results. 

To test for non-random attrition of both types, I run a probit regression of an 

indicator for attrition on observed student, teacher, and school characteristics.  Table 6.1 

shows the significant estimates from this regression.  The coefficients reported are the 

marginal effects of the given variable on the probability of leaving.  With class size 

constant, the coefficients on the other variables describe the first type of nonrandom 

attrition, while the coefficient on class size describes the second type of nonrandom 

attrition.  As expected, lower test scores significantly predict attrition: a one standard 

deviation decrease in math score is associated with a 6 percentage point increase in the 

probability of leaving.  Class size also significantly predicts attrition.  Small class 

students are less likely to leave, other factors constant.   
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These estimates fully characterize attrition (and can thus be used to correct for it) 

only if attrition is not a function of unobservable characteristics.  I argue that this is not 

an unreasonable assumption.  Given random initial assignment, attrition that is the same 

for both class types is most likely driven by ability or effort, which will be reflected in 

test score and attendance.  Attrition that differs by class type for any reason will be 

reflected in the coefficient of the small class indicator.   

6.2. Correcting for attrition bias 

 

Following the literature dealing with attrition in both the linear regression and the 

quantile regression framework, I use propensity score weighting to adjust for the 

potential attrition bias.  If selection on observables holds, and if the probit specification is 

correct, I can use the results from the probit to obtain corrected estimates for the first 

grade QTEs by assigning inverse probability weights.
12

  To do this, for each individual i I 

predict 

Pi(attrit|Xi) 

 

using the estimates from the probit.  I then construct weight 

 

 wi = 1/(1-(Pi(attrit|Xi)). 

 

For quantile τ, the weighted quantile regression minimizes (over β) 

 

∑wiρτ(Yi - ξ(Xi, β)). 

 

The idea of weighting is that we want to recover the outcome distribution of the 

original pre-attrition sample.  Non-random attrition biases the results by changing the 

quantiles of the observed outcome distributions and weighting corrects for this.  For 

instance, suppose systematic attrition from the lower tail of the distribution causes the 

                                                 
12

 This is the method used, for example, in Maitra and Vahid (2006). Other possible selection correction 

methods include Heckman-type correction.   
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20
th

 percentile to shift to the 15
th

 percentile.  With propensity score weighting, the 

students at the lower tail who remain in the experiment will receive more weight since 

they were more likely to leave, thus filling in the distribution at the lower tail and shifting 

the 15
th

 percentile back towards the 20
th

 percentile.       

Table 6.2 displays the results of the weighted attrition regressions.  Columns 1 

through 4 show the estimates of the small class effect on math scores while columns 5 

through 8 show the estimates of the effect on reading scores.  Columns 1 and 5 show the 

un-weighted estimates for comparison.  Columns 2 and 6 show the weighted results.  

Columns 3, 4, 7, and 8 show the un-weighted and weighted results when controlling for 

kindergarten test score.  All of these regressions include controls and school effects.   

The weighted results are very similar to the un-weighted results.  There is 

somewhat more heterogeneity in the point estimates in columns 2 and 6 than in columns 

1 and 5, but given the standard errors these differences are not significant.  These results 

suggest that attrition is not inflating the effect of class size on any quantile and is not 

driving the originally-observed heterogeneity in the first grade effects. 

 

7. Variation in the QTEs by subgroup 

 

In this section, I extend the analysis of heterogeneity by estimating the QTEs 

separately for subgroups defined by observable characteristics.  In subsection 7.1, I 

estimate the QTEs for subgroups defined by race and income to examine the relationship 

between heterogeneity in the full sample QTEs and heterogeneity in the subsample 

ATEs.  In subsection 7.2, I estimate the effects for experienced and inexperienced 

teachers to test whether teacher quality causes the small class effect.  
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7.1. Effects by race and income 

As mentioned is Section 2, Krueger (1999) addresses heterogeneity by estimating 

the ATEs separately for different subgroups defined by demographic characteristics.  He 

finds that the ATEs for non-whites and free lunch recipients are higher than those for 

whites and non-free lunch recipients, respectively, where free lunch is used as a proxy for 

income.  He observes that these results “suggest that the lower achieving students benefit 

the most from attending smaller classes” (524).  Assuming rank switching is not drastic, 

the results in sections 5 and 6 do not support this conclusion; to the contrary, they suggest 

that the lower achieving students benefit the least from smaller classes.  The larger 

average effect for non-whites and free lunch recipients despite their lower average 

achievement suggests that the small class effects might vary with respect to these 

demographic characteristics conditional on achievement.
13

  If this is the case, then the 

QTEs for non-whites need not follow the same patterns as the QTEs for whites.  To 

explore this possibility, I estimate the QTEs separately for white and non-white students 

and free-lunch and non-free lunch recipients.   

Since the quantile regressions are now run for each subgroup separately, the 

QTEs might differ simply because the quantiles of the subgroup distributions differ.  

Table 7.1, which displays the quantiles of the regular class kindergarten test distributions 

by subgroup, shows that the quantiles are not the same.  Thus even if estimates in the 

previous two sections hold for each subgroup, the QTEs for whites and non-whites will 

differ at any given quantile.  Since the non-white distribution is lower than the white 

                                                 
13

 Note that if this is the case then rank preservation will not hold for the overall population, though it might 

hold within subgroups.  For example, if the effect is smaller on white students, then a white student at the 

25
th

 percentile of the non-treatment distribution will be at a lower rank in the treatment distribution than a 

non-white student at the 25
th

 percentile of the non-treatment distribution.   
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distribution, the estimate at a given quantile should be smaller for non-whites if the 

effects only vary with respect to achievement.   

Table 7.2 shows the estimates for the coefficient on small class size for each 

subgroup.
14

  In Table 7.2a, the first column under each test shows the estimates for whites 

and the second column shows the estimates for non-whites.  The effects on math scores 

for both groups roughly increase as quantile increases, ranging from .07 to .33 for whites 

and .07 to .26 for non-whites.  For each of the other tests, the non-white estimates are 

almost all larger than the white estimates.  Except on kindergarten reading scores, the 

pattern of larger effect on higher quantile persists.  This pattern suggests that the small 

class effect increases with respect to achievement for both white and non-white students, 

though the differences in estimates across quantiles are rarely statistically significant due 

to the large standard errors corresponding to the reduced sample sizes.   

Table 7.2b shows the results for free lunch and non-free lunch recipients.  The 

overall trends are similar to those in Table 7.2a.  Given a .42 sample correlation between 

free lunch receipt and non-white ethnicity in kindergarten, this is not surprising. The 

main difference is the relatively small variation in the different quantile estimates for free 

lunch recipients in kindergarten.  The estimates for math range from .13 to .19 while the 

estimates for reading range from .15 to .21.  Moreover, there is no trend with respect to 

quantile.  These results suggest that the small class effect on kindergarten scores is 

similar for all free lunch recipients regardless of rank in the distribution.  In first grade, 

free lunch recipients experience substantially more heterogeneous effects that increase as 

quantile increases.  For both tests, the effect ranges from around .11 for the 10
th

 

                                                 
14

 The regressions include controls but do not include school effects due to the large demands already put 

on the data with the smaller sample sizes.  However, the estimates are similar with school effects. 
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percentile to around .40 for the 90
th

 percentile.  For non-white students, the familiar 

positive relationship between effect and quantile holds up for each test in each year.  

Again, sample size limits the statistical significance of many of these differences. 

Comparing the first grade free lunch and non-free lunch recipient estimates, small 

classes appear to have a larger effect on the latter group.  This is also supported by the 

OLS estimates of the average effect, and the relationship also holds for the average 

effects for kindergarten reading.  Similarly, Table 7.2a suggests that non-white students 

receive a larger benefit than white students for reading tests in kindergarten and both tests 

in first grade.  These estimates are in line with Krueger’s findings that the average effects 

are larger for non-white and free lunch students despite their lower distribution of 

achievement.
15

   

If rank preservation holds within the subgroups, the results in Table 7.2 provide 

the following two tentative conclusions.  First, lower income and non-white students tend 

to benefit more from smaller classes.  Second, within the subgroups, small classes are 

better for higher achieving students.  In other words, the small class effects differs both 

with respect to achievement conditional on race or income and with respect to race or 

income conditional on achievement.       

7.2. Teacher quality and the small class effect 

The positive and heterogeneous effects of small classes raise two immediate 

questions.  First, why do small classes have an impact?  Second, why is the impact larger 

for better students?   Lazear (2001) develops a model of classroom disruptions and posits 

that small classes have positive effects by reducing these disruptions.  He predicts that 

                                                 
15

 Krueger’s analysis uses averages of the three test scores, so he does not have comparable results for the 

kindergarten math scores. 
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small classes are better for more disruptive groups of students.  Sections 5 and 6 do not 

support this theory insofar as disruptive classroom behavior is correlated with lower 

achievement.
16

  Since there are no measures of classroom disruption, I can not test this 

theory more directly with the STAR data. 

Teaching potentially provides an alternative answer to both of these questions.  

Instruction time per student is the one certain variable small classes augment.  In a study 

on the effect of class size on teacher behavior, Betts and Shkolnik (1999) find that class 

size reductions cause teachers to tailor their instruction to meet individual needs.  If 

differentiated instruction is one of the mechanisms through which class size has an effect, 

then teacher quality might be an important determinant of the impact of small class size, 

since better teachers presumably are more able to tailor instruction to individual needs.  If 

schools with higher achieving students also have better teachers, then the high achieving 

students might benefit more from small classes as a result of teacher quality.    

One variable that might successfully measure teacher quality is teacher 

experience.  The previous regressions control for an indicator that the teacher has zero to 

two years of experience.  I explore potential teacher contributions to small-class 

effectiveness by estimating the QTEs separately for new and experienced teachers.  Table 

7.3 displays the results.  The first column under each test shows the small class 

coefficient estimates for students with experienced teachers and the second column 

shows the coefficient estimates for students with new teachers.  The small class effect for 

new teachers is significantly negative for kindergarten math scores, ranging from -.19 to  

-.24.  For kindergarten reading scores, the effect on the 10
th

 percentile is larger for new 

                                                 
16

 Krueger (2003) hypothesizes that Lazear’s model implies that small classes are better for better students.  

However, this is not necessarily implied by the disruption model since high achieving students might 

benefit more from reduced disruptions. 
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teachers, though the estimates for the other quantiles are small and insignificant.  In first 

grade, the point estimates are actually larger for new teachers and within the new teacher 

subgroup they increase as quantile increases.  However, these first grade differences both 

between subgroups and within the new teacher subgroup are statistically insignificant. 

These results do not point to a clear difference in effect between new teachers and 

experienced teachers.  This is not surprising given the small sample size.  Also, it is 

highly unlikely that experience is the only predictor of teacher quality, so the results from 

this crude analysis should not be taken as proof that teacher quality does not explain 

heterogeneity in the small class effect.     

 

8. Conclusion 

 

Heterogeneity in class size effects has been overlooked relative to mean effects.  

This thesis shows that heterogeneity is a key feature of class size reductions; the 

magnitude of the small class effect in kindergarten and first grade is smaller at the lower 

end and larger at the upper end of the distribution.  Although this result contradicts earlier 

studies of the heterogeneity in class size effect, the randomized STAR experiment 

provides straightforward identification of this effect with relatively few assumptions, and 

the lack of consensus on the heterogeneity should encourage further empirical research.     

  The pattern of heterogeneity found in this thesis has potentially important policy 

implications.  Higher educational achievement, even in early grades, translates into 

higher earnings.  Krueger (2003) examines this link between test score and income and 

provides a rough cost-benefit analysis of class size reductions from 22 to 15 students 

using his STAR estimates.  He calculates that the benefits are approximately equal to the 
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costs.  Since the benefits are not evenly distributed, however, the reduction might pass a 

cost-benefit test for the high end of the distribution while failing one for the low end.  

Traditionally, one justification of the usefulness of the mean effect has been that the 

government can transfer these later gains, thus cancelling out any inequality that arises 

from heterogeneous small class effects (Heckman and Smith (1997)).  As Heckman and 

Smith point out, the assumption that the government can and will transfer these gains 

later is unrealistic.  Because of these distributional effects, heterogeneity in the small 

class effect is a phenomenon that deserves further analysis and explanation so that 

policymakers can more fully understand their options for enhancing school efficiency and 

equity.      

 

 

 

 

 

 

 

  



33 

 

 
Figure 3.1 
Kernel densities of math and reading standardized scores for treatment (small class) and control 
(regular class) groups 
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Table 3.2 
       Summary statistics by class type 

  
            

     small     regular     
pr(|T|>t) 

    Obs Mean SD Obs Mean SD 

Grade K                

  Free lunch 1892 47.1% - 2187 47.7% - 0.68 

  Non-white 1900 31.9% - 2194 32.9% - 0.49 

  Age 1897 5.48 0.35 2190 5.46 0.35 0.17 

  Class size 1900 15.12 1.50 2194 22.38 2.15 0.00 

  Math SAT 1762 -0.05 1.07 2032 -0.22 1.03 0.00 

  Reading SAT 1739 -0.02 1.03 2006 -0.21 0.98 0.00 

Grade 1               

  Free lunch 1376 47.5% - 1481 44.4% - 0.10 

  Non-white 1400 30.0% - 1526 28.8% - 0.51 

  Age 1400 6.48 0.35 1526 6.47 0.35 0.57 

  Class size 1400 16.14 2.54 1526 22.44 2.85 0.00 

  Math SAT 1373 0.15 1.03 1496 -0.06 0.97 0.00 

  Reading SAT 1342 0.13 1.02 1461 -0.05 0.98 0.00 

Grade K attritors               

  Free lunch 498 53.8% - 666 56.7% - 0.32 

  White 500 62.8% - 668 58.0% - 0.09 

  Age 497 5.45 0.35 664 5.42 0.36 0.17 

  Class size 500 15.23 1.41 668 22.65 2.05 0.00 

  Math SAT 450 -0.43 1.10 600 -0.55 1.05 0.00 

  Reading SAT 436 -0.32 1.05 590 -0.51 0.94 0.00 

The right-most column contains p-values for t-tests of the null hypothesis that the small and 
regular class averages are equal.  The 1st grade summary statistics are for the group of students 
who were also in STAR in kindergarten. 
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Table 5.1 
       Estimates of coefficients on SMALL from quantile regressions by grade   

           5.1a. Kindergarten                 

    Math         Reading       

quantile   1 2 3 4   5 6 7 8 

.10 
 

.108 .142 .108 .109 
 

.095 .131 .095 .120 

  
 

(.084) (.046) (.047) (.044) 
 

(.046) (.034) (.042) (.040) 

.25 
 

.216 .097 .108 .149 
 

.159 .150 .159 .165 

  
 

(.060) (.032) (.039) (.042) 
 

(.042) (.029) (.036) (.031) 

.50 
 

.129 .156 .151 .166 
 

.159 .170 .159 .201 

  
 

(.067) (.038) (.041) (.039) 
 

(.038) (.036) (.036) (.031) 

.75 
 

.151 .168 .237 .272 
 

.222 .181 .222 .189 

  
 

(.041) (.058) (.043) (.042) 
 

(.054) (.048) (.044) (.039) 

.90 
 

.259 .270 .259 .307 
 

.191 .210 .286 .287 

  
 

(.082) (.081) (.066) (.062) 
 

(.088) (.067) (.076) (.064) 

OLS 
 

.167 .161 .191 .200 
 

.185 .173 .211 .217 

  
 

(.034) (.033) (.031) (.030) 
 

(.033) (.031) (.030) (.029) 

School Effects 
 

no no yes yes 
 

no no yes yes 

Controls 
 

no yes no yes 
 

no yes no yes 

N   3794 3779 3794 3779   3745 3730 3745 3730 

                      

5.1b. 1st grade                   

    Math         Reading       

quantile   1 2 3 4   5 6 7 8 

.10 
 

.091 .073 .091 .158 
 

.142 .092 .142 .115 

  
 

(.070) (.051) (.052) (.052) 

 

(.047) (.041) (.045) (.040) 

.25 
 

.228 .158 .160 .162 
 

.213 .183 .195 .149 

  
 

(.051) (.043) (.039) (.044) 

 

(.038) (.034) (.047) (.044) 

.50 
 

.205 .174 .205 .160 
 

.284 .239 .213 .217 

  
 

(.060) (.047) (.046) (.044) 

 

(.057) (.051) (.044) (.044) 

.75 
 

.342 .287 .274 .232 
 

.373 .302 .337 .279 

  
 

(.072) (.046) (.046) (.042) 

 

(.081) (.057) (.061) (.047) 

.90 
 

.388 .295 .320 .265 
 

.444 .266 .390 .280 

  
 

(.077) (.075) (.063) (.064) 

 

(.137) (.072) (.088) (.068) 

OLS 
 

.246 .206 .215 .187 
 

.245 .225 .226 .213 

  
 

(.036) (.034) (.033) (.032) 
 

(.037) (.034) (.033) (.033) 

School Effects 
 

no no yes yes 
 

no no yes yes 

Controls 
 

no yes no yes 
 

no yes no yes 

N   3044 3001 3044 3001   2979 2934 2979 2934 
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5.1c. 1st grade controlling for grade K score             

    Math         Reading       

quantile   1 2 3 4   5 6 7 8 

.10 
 

.103 .018 .070 .083 
 

.124 .053 .090 .059 

  
 

(.045) (.044) (.050) (.049) 

 

(.042) (.044) (.041) (.038) 

.25 
 

.108 .111 .097 .061 
 

.116 .101 .077 .085 

  
 

(.053) (.037) (.036) (.036) 

 

(.039) (.035) (.032) (.033) 

.50 
 

.130 .124 .093 .061 
 

.130 .126 .069 .051 

  
 

(.037) (.035) (.036) (.033) 

 

(.037) (.042) (.036) (.044) 

.75 
 

.160 .152 .095 .057 
 

.181 .180 .164 .133 

  
 

(.040) (.042) (.043) (.039) 

 

(.041) (.053) (.041) (.049) 

.90 
 

.169 .136 .095 .101 
 

.198 .199 .215 .207 

  
 

(.071) (.053) (.054) (.052) 

 

(.075) (.064) (.059) (.063) 

OLS 
 

.136 .114 .087 .068 
 

.160 .144 .127 .117 

  
 

(.031) (.030) (.028) (.028) 
 

(.031) (.029) (.028) (.028) 

School Effects 
 

no no yes yes 
 

no no yes yes 

Controls 
 

no yes no yes 
 

no yes no yes 

N   2857 2817 2857 2817   2758 2716 2758 2716 

Dependent variable: score for test type given in first row.  Bootstrapped SEs in parentheses. Controls include all 
available individual, teacher, and school characteristics.  The regressions with "school effects" include indicators 
for each school. 
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Table 5.2  
P-values from tests for differences in SMALL coefficients for the two quantiles in 
the left-most columns 

  Numbered columns correspond to columns in Table 5.1 
              

     5.2a. Kindergarten               

    Math 
   

Reading 
  

  

quantiles 1 2 3 4 5 6 7 8 

.10 .25 .263 .312 1.000 .328 .216 .528 .105* .237 

.10 .50 .842 .800 .450 .244 .215 .305 .190 .080** 

.10 .75 .627 .689 .028** .003** .048** .338 .017** .214 

.10 .90 .159 .152 .054* .008** .304 .305 .013** .017** 

.25 .50 .251 .091* .401 .650 1.000 .496 1.000 .265 

.25 .75 .378 .177 .020** .013** .300 .495 .156 .594 

.25 .90 .666 .024** .029** .013** .713 .376 .095* .048** 

.50 .75 .774 .802 .057* .007** .191 .788 .119* .737 

.50 .90 .178 .140* .118* .025** .713 .550 .100* .195 

.75 .90 .192 .137* .732 .529 .684 .619 .359 .066** 

  
        

  

5.2b. 1st 
grade                 

    Math 
   

Reading 
  

  

quantiles 1 2 3 4 5 6 7 8 

.10 .25 .030** .052* .153 .937 .122* .012** .250 .396 

.10 .50 .146* .087* .056* .968 .036** .011** .187 .051* 

.10 .75 .009** .001** .003** .201 .009** .000** .007** .004** 

.10 .90 .007** .017** .001** .201 .030** .011** .017** .027** 

.25 .50 .707 .708 .297 .973 .171 .228 .691 .151 

.25 .75 .163 .011** .014** .196 .054* .027** .026** .017** 

.25 .90 .090* .089* .007** .185 .102* .235 .034** .078* 

.50 .75 .092* .006** .116 .121* .227 .141* .022** .228 

.50 .90 .051* .088* .080** .149* .257 .702 .035** .384 

.75 .90 .592 .890 .440 .581 .588 .569 .490 .992 
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5.2c. 1st grade controlling for grade K score         

    Math 
   

Reading 
  

  

quantiles 1 2 3 4 5 6 7 8 

.10 .25 .916 .029** .479 .554 .818 .137 .674 .486 

.10 .50 .601 .035** .654 .661 .902 .153 .626 .856 

.10 .75 .323 .021** .674 .630 .322 .035** .185 .193 

.10 .90 .433 .066* .712 .785 .371 .045** .074* .038** 

.25 .50 .637 .725 .900 .994 .710 .496 .834 .408 

.25 .75 .321 .397 .965 .929 .183 .117* .067* .350 

.25 .90 .470 .674 .970 .465 .309 .135* .033** .070* 

.50 .75 .386 .442 .952 .921 .184 .193 .017** .054* 

.50 .90 .563 .832 .960 .424 .319 .229 .021** .013** 

.75 .90 .871 .713 .999 .326 .776 .728 .349 .145* 

P-values are for tests of the null hypothesis that the coefficients on SMALL for the given quantiles in each row 
are equal. * indicates significance at the 15% level. ** indicates significance at the 5% level. 
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Table 5.3  
  Results from quantile regressions in Column 4 of Table 5.1a 

 Dependent variable: kindergarten math score 
  

        quantile 

  .10 .25 .50 .75 .90 

Small class .109 .149 .166 .272 .307 

  (.044) (.042) (.039) (.042) (.062) 

Female .080 .142 .163 .163 .111 

  (.036) (.031) (.036) (.044) (.054) 

Non-white -.266 -.287 -.339 -.436 -.494 

  (.088) (.077) (.062) (.076) (.130) 

Age .222 .396 .484 .441 .399 

  (.078) (.071) (.060) (.074) (.107) 

Free lunch recipient -.279 -.422 -.409 -.433 -.412 

  (.039) (.044) (.043) (.044) (.075) 

Repeat .011 .287 .379 .368 .342 

  (.124) (.105) (.111) (.124) (.194) 

Special Ed -.333 -.436 -.235 -.382 -.262 

  (.150) (.119) (.113) (.142) (.208) 

Special instruction -.670 -.500 -.503 -.395 -.312 

  (.137) (.088) (.113) (.121) (.203) 

Days present .003 .003 .003 .004 .004 

  (.001) (.001) (.001) (.001) (.001) 

Teacher new .042 -.086 -.117 -.188 -.218 

  (.075) (.074) (.072) (.068) (.095) 

Teacher adv. degree .014 -.027 -.046 -.078 -.119 

  (.067) (.057) (.054) (.066) (.084) 

Teacher black .059 .064 .126 -.436 .183 

  (.093) (.088) (.078) (.076) (.133) 

Inner city school -.428 -.272 -.143 -.248 .420 

  (.353) (.258) (.319) (.378) (.635) 

Suburban school -.585 -.380 -.073 .068 .644 

  (.559) (.257) (.366) (.352) (.720) 

Urban school .018 -.075 .458 .093 .526 

  (.363) (.246) (.382) (.390) (.568) 

Pseudo R^2 .180 .180 .188 .205 .214 

Bootstrapped standard errors in parentheses. These regressions included 
constant terms 
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Figure 5.1 
Coefficients on SMALL from quantile regressions of kindergarten math SAT score on SMALL and 
controls (including school effects) 
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The black line is the point estimate and the grey band is the 90% confidence interval.  The dashed line is 
the OLS estimate and the dotted lines are the bounds of the OLS 90% confidence interval. 
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Table 6.1 

Significant predictors of post-K attrition 
  

Math Score -.060 

  (.011) 

Reading Score -.034 

  (.012) 

Small Class -.038 

  (.015) 

Non-white -.107 

  (.023) 

Free Lunch Recipient .045 

  (.017) 

Days Present -.002 

  (.000) 

Inner City School .258 

  (.036) 

Suburban School .263 

  (.024) 

Urban School .125 

  (.032) 

N 3728 

The right column shows coefficient estimates 
from a probit regression where the dependent 
variable is an indicator for leaving STAR after 
grade K.  Marginal effects are reported.  Standard 
errors in parentheses.  Regression included the 
same variables as those in Table 5.3 
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Table 6.2 
     Coefficients on SMALL for weighted first grade quantile regressions 

  
        

 
        

    Math         Reading       

quantile   1 2 3 4   5 6 7 8 

.10 
 

.158 .165 .083 .075 
 

.115 .117 .059 .058 

  
 

(.052) (.019) (.034) (.046) 
 

(.036) (.013) (.031) (.015) 

.25 
 

.162 .149 .061 .077 
 

.149 .162 .085 .075 

  
 

(.036) (.026) (.044) (.022) 
 

(.050) (.012) (.024) (.028) 

.50 
 

.160 .167 .061 .073 
 

.217 .211 .051 .062 

  
 

(.041) (.029) (.030) (.020) 
 

(.041) (.038) (.025) (.018) 

.75 
 

.232 .232 .057 .069 
 

.279 .273 .133 .140 

  
 

(.037) (.037) (.051) (.026) 
 

(.061) (.044) (.066) (.033) 

.90 
 

.265 .288 .101 .093 
 

.280 .310 .207 .201 

  
 

(.050) (.038) (.034) (.040) 
 

(.046) (.076) (.054) (.048) 

w/ Prev Year 
 

no no yes yes 
 

no no yes yes 

weighted 
 

no yes no yes 
 

no yes no yes 

N   3001 2780 2817 2780   2934 2714 2716 2714 

Dependent variable: SAT score for subject in first row. "w/ Prev Year" regressions control for grade K test 
scores.  Standard errors in parentheses. Note that the standard errors should be estmiated with 
bootstrap, at least in the second stage and ideally in a way to account for uncertainty in the first stage 
probit estimates.  Due to time constraints, I do not do this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 

 

 

Table 7.1 
      Quantiles of the grade K regular class SAT distributions by subgroup 

  Math       Reading     

q 
Non-free 

lunch 
free 

lunch difference 
 

Non-
free 

lunch 
free 

lunch difference 

.10 -1.17 -1.63 0.45 
 

-1.06 -1.47 0.41 

.25 -0.66 -1.17 0.52 
 

-0.65 -1.09 0.44 

.50 -0.10 -0.55 0.45 
 

-0.07 -0.55 0.48 

.75 0.57 0.27 0.30 
 

0.59 -0.07 0.67 

.90 1.42 0.92 0.50 
 

1.33 0.63 0.70 

  
      

  

  white 
non-
white difference 

 
white 

non-
white difference 

.10 -1.28 -1.76 0.47 
 

-1.15 -1.54 0.38 

.25 -0.74 -1.17 0.43 
 

-0.74 -1.15 0.41 

.50 -0.20 -0.55 0.35 
 

-0.23 -0.55 0.32 

.75 0.42 0.27 0.15 
 

0.44 0.02 0.41 

.90 1.16 0.92 0.24   1.10 0.63 0.48 
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Table 7.2 
         Coefficients on SMALL from quantile regressions by subgroup 

7.2a. Non-white                     

    Kindergarten         First grade       

  
 

Math     Reading   
 

Math     Reading   

quantile   white 
non-
white   white 

non-
white   white 

non-
white   white 

non-
white 

.10 
 

.117 .118 
 

.042 .241 
 

.064 .117 
 

.124 .098 

  
 

(.057) (.089) 
 

(.038) (.049) 
 

(.065) (.068) 
 

(.049) (.066) 

.25 
 

.074 .075 
 

.121 .190 
 

.201 .137 
 

.164 .181 

  
 

(.045) (.064) 
 

(.035) (.057) 
 

(.064) (.083) 
 

(.055) (.070) 

.50 
 

.166 .094 
 

.152 .146 
 

.179 .236 
 

.289 .252 

  
 

(.043) (.057) 
 

(.040) (.056) 
 

(.068) (.073) 
 

(.063) (.069) 

.75 
 

.173 .171 
 

.131 .206 
 

.271 .334 
 

.325 .308 

  
 

(.065) (.107) 
 

(.057) (.093) 
 

(.064) (.093) 
 

(.067) (.085) 

.90 
 

.332 .263 
 

.185 .293 
 

.279 .384 
 

.299 .357 

  
 

(.079) (.150) 
 

(.082) (.132) 
 

(.069) (.129) 
 

(.075) (.113) 

OLS 
 

.173 .122 
 

.141 .232 
 

.170 .246 
 

.160 .264 

  
 

(.038) (.060) 
 

(.040) (.051) 
 

(.045) (.061) 
 

(.046) (.047) 

N   2564 1215   2536 1194   1910 870   1849 865 

    
  

 
  

 
  

 
 

  

7.2b. Free lunch                     

    Kindergarten         First grade       

  
 

Math     Reading   
 

Math     Reading   

quantile   non-fl 
free 

lunch   non-fl 
free 

lunch   non-fl 
free 

lunch   non-fl 
free 

lunch 

.10 
 

.055 .186 
 

.048 .182 
 

.017 .115 
 

.123 .106 

  
 

(.074) (.060) 
 

(.041) (.048) 
 

(.071) (.066) 
 

(.063) (.042) 

.25 
 

.083 .133 
 

.150 .145 
 

.102 .181 
 

.198 .149 

  
 

(.050) (.041) 
 

(.045) (.039) 
 

(.061) (.065) 
 

(.065) (.058) 

.50 
 

.196 .155 
 

.169 .177 
 

.122 .248 
 

.250 .254 

  
 

(.050) (.068) 
 

(.038) (.043) 
 

(.064) (.049) 
 

(.074) (.049) 

.75 
 

.219 .165 
 

.190 .209 
 

.209 .308 
 

.372 .169 

  
 

(.070) (.077) 
 

(.064) (.057) 
 

(.079) (.062) 
 

(.076) (.095) 

.90 
 

.433 .161 
 

.234 .173 
 

.222 .371 
 

.292 .430 

  
 

(.085) (.110) 
 

(.105) (.087) 
 

(.098) (.095) 
 

(.073) (.118) 

OLS 
 

.167 .158 
 

.151 .206 
 

.176 .244 
 

.198 .206 

  
 

(.045) (.048) 
 

(.047) (.041) 
 

(.050) (.053) 
 

(.050) (.007) 

N   1991 1788   1964 1766   1526 1254   1498 1216 

Dependent variable: SAT score for subject in second row. Standard errors in parentheses. "non-fl" denotes non-
free lunch recipients. All regressions include controls but not school effects. 
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Table 7.3 
       Coefficients on SMALL for teacher indicators from quantile regressions by techer experience 

  

    Kindergarten           First grade       

  
 

Math   
 

Reading   
 

Math   
 

Reading   

quantile   old teacher 
new 

teacher   
old 

teacher 
new 

teacher   
old 

teacher 
new 

teacher   
old 

teacher 
new 

teacher 

.10 
 

.182 -.241 
 

.113 .228 
 

.077 .022 
 

.111 .185 

  
 

(.052) (.124) 
 

(.038) (.073) 
 

(.055) (.125) 
 

(.038) (.114) 

.25 
 

.177 -.238 
 

.180 .007 
 

.143 .249 
 

.187 .269 

  
 

(.039) (.101) 
 

(.030) (.090) 
 

(.042) (.116) 
 

(.036) (.102) 

.50 
 

.242 -.342 
 

.199 .033 
 

.159 .346 
 

.247 .289 

  
 

(.037) (.123) 
 

(.033) (.086) 
 

(.050) (.130) 
 

(.042) (.107) 

.75 
 

.228 -.311 
 

.201 .032 
 

.269 .323 
 

.319 .352 

  
 

(.059) (.147) 
 

(.050) (.087) 
 

(.053) (.154) 
 

(.050) (.129) 

.90 
 

.386 -.186 
 

.216 .095 
 

.301 .326 
 

.312 .442 

  
 

(.095) (.115) 
 

(.073) (.178) 
 

(.075) (.235) 
 

(.065) (.262) 

OLS 
 

.234 -.238 
 

.190 .078 
 

.219 .139 
 

.187 .282 

  
 

(.036) (.083) 
 

(.035) (.073) 
 

(.040) (.091) 
 

(.039) (.093) 

N   3210 569   3181 549   2401 379   2338 376 

Dependent variable: SAT score for the subject in the second row. Standard errors in parentheses.  "new teacher" 
denotes teachers with fewer than three years of experience and "old teacher" denotes teachers with more than two 
years of experience.  
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