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Abstract 

This paper seeks to determine whether or not risk aversion has increased 

following the 2008 financial crisis by examining evidence from the S&P 500 Index and 

its related European options. Risk aversion is calculated from the subjective probabilities, 

which describe the perceived likelihood of outcomes, and the risk-neutral probabilities, 

which are those same probabilities adjusted for the marginal utility at the given level of 

wealth. The paper investigates existing methods and proposes new approaches for 

inferring both subjective and risk-neutral probabilities. After evaluating each method, the 

preferred estimates obtained are used to estimate marginal utility, which is then used to 

study risk aversion. The paper concludes that risk aversion has apparently decreased after 

the financial crisis, but this result may be sensitive to some assumptions inherent in the 

analysis. 

Keywords: Risk Aversion, Financial Crises, Option Pricing, Black-Scholes, 

Kernel Density Estimation  



2 
 

1 Introduction 

There is a common conception that risk aversion increases during and 

immediately following market crashes. This view, if true, would indicate some sort of 

fundamental shift in the financial markets as a result of a crash. Since traditional 

economic theory assumes that preferences are stable, a change in risk aversion, as a 

property of utility functions, may call into question this assumption. This paper seeks to 

corroborate or refute the existence of a change in risk aversion by examining historical 

S&P 500 Index and option prices. 

Risk aversion can be found as the difference between the subjective probabilities, 

which describe the perceived likelihood of outcomes, and risk-neutral probabilities, 

which are those same probabilities adjusted for the marginal utility at the given level of 

wealth, of future states of the world (i.e., stock prices). Subjective probabilities can be 

approximated with historical returns or inferred from option prices via the Black-Scholes 

option pricing formula. Risk-neutral probabilities may be derived directly from observed 

option prices or through the use of the Black-Scholes formula as well. Each method has 

its own weaknesses. In particular, the Black-Scholes techniques seem promising, but any 

analysis based on the Black-Scholes formula is invalid due to an empirical phenomenon – 

the volatility smile – that the formula produces. 

The purpose of this paper is twofold: 1) to explore and evaluate different 

techniques for inferring subjective and risk-neutral probabilities from historic security 

and option prices, and 2) to examine the effect of the 2008 financial crisis on risk 

aversion through the use of the most suitable method. Regarding the first objective, the 
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paper finds that substituting a non-central t distribution in the place of the normal 

distribution used in the Black-Scholes formula to describe stock returns appears to 

eliminate the volatility smile problem, and fitting available option prices to this modified 

formula gives the best estimates of both subjective and risk-neutral probabilities. Using 

the aforementioned technique, the paper finds evidence of decreased risk aversion 

following the financial crisis. However, this conclusion must be taken with caution 

because some of the assumptions needed to estimate risk aversion with option prices may 

not hold. 

The paper proceeds as follows. Section 2 presents the theoretical background 

behind inferring risk aversion from index and option prices. Section 3 proposes different 

practical methods for calculating the factors needed to determine risk aversion and 

discusses their relative merits. Section 4 overviews the data. Sections 5 through 7 report 

results. Section 8 concludes. 

2 Theory 

This section outlines the theoretical framework that underlies this paper. The 

discussion commences with a broad overview of options, subjective probabilities, and 

risk-neutral probabilities. Option prices are then shown to imply risk-neutral probabilities. 

Finally, risk aversion determines the difference between subjective and risk-neutral 

probabilities. 

2.1 Options 

 An option, as a derivative financial product, is a contract that grants the right, but 

not the obligation, to buy or sell a certain number of shares of a given stock, the 
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underlying, at a predetermined strike price. The transfer of stock only occurs if the owner 

of the option chooses to exercise it on a specific expiration date
2
. A call option is the 

right to buy stock, while a put option is the right to sell stock. Since it conveys the ability 

but not the commitment to buy stock, call options are typically only exercised if, at 

expiry, the price of the stock (also known as the spot price) is greater than the strike price. 

For example, at expiration, a call option with a strike of $25 will have payoffs 

represented by the following diagram. 

 

Note that in the above figure, the payoff function of the call option when stock 

price exceeds $25 appears to be a continuous straight line with slope 1. However, both 

stock and option prices are actually discrete – they must be in increments of whole cents. 

Thus, the right half of the payoff diagram is really a step function with steps $0.01 apart. 

This distinction is important to make, as the later analysis requires discrete states of the 

world, where each state is a possible stock price. 

                                                           
2
 European-style options must be exercised at expiry. American-style options may be exercised 

any time before expiration as well. This paper is concerned with European options. 
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This paper only examines call options and so will sometimes use the term 

“options” to refer to call options; a similar analysis can be conducted with put options. 

2.2 Subjective Probabilities 

Subjective probabilities refer to the probabilities that one believes to represent the 

likelihood of the realization of a certain outcome. These are not the same as the objective 

probabilities that describe the actual probabilities of occurrence, which is unobservable 

for non-experimental data. The following example illustrates the distinction between the 

two terms: suppose there is an unfair coin that will come up heads 60% of the time. The 

objective probability distribution is therefore 0.6H/0.4T. However, if the coin is falsely 

believed to be fair, then the subjective probabilities will be 0.5H/0.5H. 

Asset prices, including option prices, are affected by subjective probabilities, not 

objective ones (which are unknown). However, it should be noted that, under the 

assumption of perfectly rational expectations, subjective probabilities should be unbiased 

estimates of objective probabilities. 

2.3 Arrow Securities and Risk-Neutral Probabilities 

An Arrow security
3
 is a hypothetical state-contingent security that pays $1 if its 

specific state of the world occurs in the next time period. If, at t0, one held an Arrow 

security for each possible distinct state of the world at t1, one would be guaranteed a 

payout of $1 at t1. This means that, by the no-arbitrage principle, the total sum of the 

prices of these Arrow securities at t0 must be 1 + r, where r is the risk-free rate from t0 to 

                                                           
3
 Also known as an Arrow-Debreu security 
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t1. Equivalently, this is to say that the present discounted value of the sum of all the 

Arrow securities must be $1. 

Further, the discounted price of a single Arrow security is called the risk-neutral 

probability. That is, 

 
  

   
      (2.1) 

where Pi is the price of the Arrow security and RNPi is the risk-neutral probability for 

state i. 

Risk-neutral probabilities are not actual probabilities – the term “probability” is 

only used to highlight two special properties of risk-neutral probabilities: each risk-

neutral probability must be between 0 and 1, and together they must sum to one. 

However, risk-neutral probabilities are related to the true (that is, subjective) probabilities 

of the occurrences of their respective states of the world, adjusted by risk preferences: 

           (2.2) 

where pi is the subjective probability and αi is a risk adjustment factor for state i. 

The risk adjustment factor αi is how much the risk-neutral probability has been 

affected by risk aversion in relation to the subjective probability. For state of the world i, 

αi > 1 indicates that one is willing to pay a risk premium to purchase the Arrow security
4
, 

and αi < 1 means individuals will pay less than $1 for the Arrow security. In fact, αi can 

                                                           
4
 This is because in state i, a lower level of wealth obtains and so $1 in state i is worth more than 

$1 today. 
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almost be viewed as today’s equivalent, in utility terms, of $1 in the future state, given 

that the state occurs. 

While Arrow securities do not exist in real life, they – and, relatedly, risk-neutral 

probabilities – are still particularly interesting because they allow the pricing of other 

types of securities, including stocks, options, and more elaborate financial instruments. 

Any security can be understood as a state-contingent contract that has various pre-defined 

payoffs based on the state of the world achieved and, thus, can be replicated with a basket 

of Arrow securities. 

For instance, consider a call option with a strike price of $10. This contract will 

pay nothing if the stock price at the time of expiration is $10 or less. The call option will 

pay $0.01 if the final stock price is $10.01; it will pay $0.02 if the stock ends up at $10.02, 

and so on, with the option value increasing one-for-one with the resulting stock price. 

This call option has the same payout structure as a bundle of Arrow securities: 

                                                 

where C$10.00 is the payout for the call option, and Ai is the Arrow security that pays $1 if 

the stock finishes at price i. 

Thus, if the prices of the Arrow security for each possible state of the world are 

known, then it is possible to calculate the price of any security as a linear combination of 

the prices of the appropriate Arrow securities. Similarly, it is possible to reverse this 

calculation and find the prices of Arrow securities using more complicated securities
5
. 

                                                           
5
 This, of course, requires that the available securities span all states of the world. In theory, as 

Gisiger (2010) points out, this is assumed to hold. 
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The next section demonstrates how call option prices can be used to infer the prices of 

Arrow securities and, through that, the risk-neutral probabilities. 

2.4 Option Prices Imply Risk-Neutral Probabilities 

The following example based on Breeden and Litzenberger (1978) shows how the 

second difference of call prices over different strike prices imply risk-neutral 

probabilities. 

Suppose at t1 there are five possible states of the world, s1 through s5. For 

simplicity, let the states of possible stock prices be numerically ordered, so that s2 is one 

level “higher” than s1, and so on. At t0, a discrete “call option” c
1
 on the market will pay 

$1at t1 for each state higher than s1. Figure 2.2 illustrates the payoffs for c
1
. Another call 

option contract c
2
 that pays off $1 if state s2 or higher occurs has similar payoffs. This is 

shown in Figure 2.3. 

A third contract c
1
′ can be constructed by buying c

2
 and selling c

1
. Essentially, c

1
′ 

= c
1
 – c

2
, and c

1
′ can be seen as a first difference of the original call options. Its price is 

equal to the price of c
2
 minus the price of c

1
, and its payoff (see Figure 2.4) can be found 

by subtracting the payoff of c
2
 from that of c

1
. By the same method, c

2
′ can also be 

defined as the difference between c
2
 and c

3
. The payoffs for c

2
′ are shown in Figure 2.5.  

Finally, another contract c
1
″ can be produced by buying c

1
′ and selling c

2
′. c

1
″ 

may be represented as c
1
″ = c

1
′ – c

2
′ = (c

1 
– c

2
) – (c

2
 – c

3
) and is therefore a second 

difference of the c
n
s, where n is a state of the world. This new contract has payoffs 

according to Figure 2.7. 
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Clearly, c
1
″ pays $1 if and only if state s1 occurs at t1. Thus, its price – which is 

the second difference of the original call option prices – is equal to the probability of s1 

adjusted for risk. That is to say, c
1
″ represents the price of the Arrow security of s1. Other 

c
n
″s may be calculated in the same way to find the individual prices of the complete set of 

Arrow securities. By equation (2.1), these prices can be discounted to the present via the 

risk-free rate to produce the risk-neutral probabilities of all the possible states at t1, which 

necessarily sum to one. Example risk-neutral probabilities are shown in Figure 2.7. 

2.5 Deriving Risk Aversion from Risk-Neutral and Subjective Probabilities 

As shown in equation (2.2), risk-neutral probabilities can be expressed as the 

product of subjective probabilities and an adjustment for risk aversion. Rearranging that 

equation gives risk-adjustment as a function of both probabilities: 

    
    

  
  (2.3) 

Recall from the brief discussion earlier that risk-adjustment is also related to the 

utility function. More formally, as Jackwerth (2000) shows, 

  ( )  (
 

   
) (

    

  
)  

where λ is a constant representing the shadow price of the budget constraint and U’(i) is 

the marginal utility of wealth in state i. Manipulating this equation and substituting in    

from equation (2.3) produces 

   (
   

 
)  ( )  
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This final equation demonstrates that αi – which, by equation (2.3), is also the ratio of the 

risk-neutral probability to the subjective probability – is actually directly proportional to 

marginal utility of the equivalent level of wealth. 

3 Methodology 

3.1 Finding Subjective Probabilities 

Equation (2.3) indicates that estimates of subjective probabilities are needed in 

order to infer risk aversion from risk-neutral probabilities. This paper uses two methods 

to estimate the subjective probability distribution for the time periods studied. They are 

introduced in the following sections along with both their advantages and shortcomings. 

3.1.1 Kernel Density Estimation with Historical Returns 

One simple way to estimate the subjective probability distribution is to find a 

kernel density estimate of historical returns over a period of time (Jackwerth (2000)). 

Kernel density estimation is a technique for calculating a probability density function 

based on frequency data. One of its advantages lies in the fact that it does not presuppose 

a functional form for the final distribution. In fact, it requires only two parameters: a 

kernel function and a bandwidth. This paper will use the normal distribution as the kernel 

function and will select a bandwidth via a calculation proposed by Scott (1992)
6
: 

              
 ̂

√ 
  

                                                           
6
 This method is a commonly-used variant of the Silverman rule-of-thumb (Silverman (1986)), 

which used 0.9 as the multiplier instead. 
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where  ̂ is the sample standard deviation and n is the sample size. 

The benefit to using this method is that it is easy to put into practice. Historical 

equity prices are easily acquirable. From there, it is only a straightforward calculation to 

find non-overlapping
7
 n-day returns to prepare for the kernel density estimation. 

One problem with this method is that relies on past performance being a good 

indicator of future predictions, which is not necessarily true. More precisely, two 

assumptions are made: 1) that the objective probability distribution did not change during 

or since the time the historical samples are taken, and 2) that subjective probabilities 

coincide with objective probabilities (i.e. rational expectations). Historical returns are 

based on past objective probabilities, and it is entirely possible that those objective 

probabilities have changed over time. Even if they have not changed, market participants 

may believe that they have. Thus, subjective probabilities of future stock returns may not 

actually be the same as the objective probabilities calculated from actualized returns. This 

problem may be ameliorated by analyzing returns from a relatively short timeframe 

immediately preceding the date to which the forecast is being made. The effectiveness of 

this strategy relies on the assumption that changes in market conditions, perceived or real, 

occur gradually, and so more recent historical samples will more closely reflect the 

correct probabilities. 

Another potential problem lies in the possibility that the sample of historical 

returns used is not representative of the actual objective distribution. This could occur if 

                                                           
7
 Non-overlapping data is used to ensure independence. Unfortunately, depending on the size of n, 

this requirement could severely reduce the amount of usable data. 
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the timeframe examined happens to include not enough or too many low-probability 

events and is, unfortunately, exacerbated by smaller sample sizes. 

3.1.2 Black-Scholes Implied Distribution 

To lessen the reliance on historical data, this paper also proposes an alternative 

method that derives the subjective probability distribution from option prices through the 

Black-Scholes option pricing formula. The Black-Scholes formula assumes that the 

subjective underlying compound returns are normally distributed with standard deviation
8
 

σ. The idea behind this method is that by plugging the market price of any liquid
9
 call 

option and the other readily observable parameters into this formula, it will be possible to 

infer the value of σ. 

Unfortunately, this method will not produce the mean of stock returns for the 

subjective probability distribution
10

, which must still be found from historical data. Thus, 

it will still produce an inaccurate estimate if past performance is not perfectly in line with 

future expectations. However, the degree to which this estimate may be affected is 

significantly smaller in comparison with the previous method; the general shape of the 

distribution will remain unaffected. Further, the error introduced may be decreased by 

using a longer time horizon for the historical sample
11

. 

                                                           
8
 In option theory, this standard deviation of returns is referred to as the volatility of the security. 

Volatility is typically reported in annualized terms, unless otherwise stated. 

 
9
 Liquidity is important as liquid contracts are less likely to be mispriced. 

 
10

 Since the Black-Scholes formula is based on the no-arbitrage principle, it does not take into 

account drift in the underlying price. 
11

 The intuition here is that over time, the shape (e.g. variance) of the subjective probability 

distribution may change, but since stock prices are assumed to follow a random walk, the overall 
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A second potential source of error lies in the possibility that general form of the 

subjective distribution used in the Black-Scholes formula is incorrect. For instance, 

Cassidy, Hamp, and Ouyed (2010) show that historical DJIA and S&P 500 returns are 

both better described with a Student’s t distribution than with the normal distribution 

assumed by Black-Scholes. If this is the case, then the above method will not give an 

accurate subjective distribution. This problem is discussed in more depth in the following 

section. 

3.2 Finding Risk-Neutral Probabilities 

Calculating risk-neutral probabilities is a much more difficult process than is 

portrayed by Figures 2.2 through 2.7. The following sections detail the complications 

involved with this technique and discuss possible solutions. 

3.2.1 An Empirical Difficulty 

Although the procedure outlined in Section 2.3 for using option prices to find the 

risk-neutral distribution is theoretically sound, it is empirically impossible. For a stock or 

index, each penny-increment in price, from $0.00 to infinity, represents a potential future 

state of the world. To find the prices of every individual Arrow security for a given stock 

or index, the options on that security must be available in every possible strike price, 

which is obviously not the case. The strikes for the S&P 500 options, for instance, are 

only available in uneven intervals of integer dollar amounts; consecutive strike prices can 

differ by anywhere from $5 to $100. As a result of these gaps, the second differences of 

                                                                                                                                                                             
anticipated mean will remain the same. Thus, if subjective probabilities are solely inferred from 

historical data, then it is important to use a shorter timeframe in order to better represent the 

overall shape, but if historical data is only used to approximate the mean of returns, then a longer 

time period is desired. 
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option prices mean something entirely different from and more complicated than the 

price of a single Arrow security. The following simplified example illustrates the idea 

behind the problem. 

Suppose there are three options: c
10

, c
15

, and c
20

, which have strike prices of $10, 

$15, and $20, respectively. The payoffs of two new derivative contracts c
10

′ and c
15

′ are 

presented in Figures 3.1 and 3.2 respectively. 
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Finally, the payoff of c
10

″ may be found as the difference between c
10

′ and c
15

′: 

 

Figure 3.3 shows that the second difference of the option prices of c
10

, c
25

, and c
20

 

will not be equal to the hypothetical price of a single Arrow security that corresponds to 

the state of the world where the stock price is $10. Instead, the second difference reflects 

the value of a basket of Arrow securities at mixed proportions, which cannot be easily 

translated into risk-neutral probabilities as a function of the state of the world (i.e., stock 

price) at expiration of the option. 

Jackwerth (2000) proposes a promising solution to this problem: using the Black-

Scholes option pricing formula and the available option prices to create a smooth 

function, effectively filling in the $5 to $100 gaps between the existing strike prices with 

synthetically-generated option prices. The intuition here is that the Black-Scholes 

formula, given the necessary parameters, will give the price of a call option as a 

continuous function of strike price. Taking the second derivative of the Black-Scholes 

formula with respect to strike price, then, is analogously equivalent to taking the second 
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differences of the prices of options over different strikes. This method would produce a 

continuous function of Arrow security prices, which can then translate into a probability 

density function that represents the risk-neutral probabilities. 

This method rests on the assumption that the Black-Scholes formula accurately 

reflects the call option prices from the risk-free rate r, time to expiration t, strike price K, 

spot price S, and volatility of the underlying security σ. Since σ is (the only parameter) 

not directly observable, it must first be estimated from available option data through the 

Black-Scholes formula. Jackwerth’s entire process is roughly as follows: 

1. Using the Black-Scholes formula and known values for the call option price, r, 

t, K, and S, calculate the implied volatility for each liquid option contract on 

the market. The rationale for using many different option prices instead of just 

one is that there will always be noise in market prices, and this noise can be 

reduced with a larger sample size. 

2. Average the resulting implied volatilities. The justification for this step is that 

there should be only one value for the volatility of the underlying security; the 

observed differences found must thus be due to random noise. 

3. Take the second derivative with respect to strike price of the Black-Scholes 

formula. This, as Breeden and Litzenberger (1978) suggest, is analogous to 

finding the second differences in the discrete example above. 

4. Plug the final implied volatility back into the second derivative found. The 

resulting function is the risk-neutral probability distribution for the underlying, 

as implied by its option prices. 
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In an ideal world where the Black-Scholes formula perfectly describes option 

prices, the above procedure would produce the correct option-implied risk-neutral 

probability densities. Further, the method offered in the previous section for finding 

subjective probabilities from option prices would also give accurate results. This means 

that both probability distributions may be found solely with option prices and the Black-

Scholes formula; one run-through of Jackwerth’s proposed method would be sufficient to 

find risk aversion
12

. 

Unfortunately, this is not a Black-Scholes-perfect world, and there is one major 

problem in using the Black-Scholes formula. Empirically, when one finds the Black-

Scholes implied volatilities of a series of strike prices for a particular option chain, the 

values for these volatilities are not, as is expected, the same (with random noise). Instead, 

the implied volatilities vary with “moneyness”; they tend to be lower for near-the-money 

strikes and higher the deeper the strike is in- or out-of-the-money. Graphically, these 

implied volatilities, plotted against their strike prices, create a curved shape often known 

as the volatility smile (Rubinstein (1994)). Figure 3.4 presents the implied volatilities 

found from the prices of June-07 S&P 500 call options on May 16, 2007. 

This figure demonstrates an important characteristic of equity options: an 

asymmetric, skewed smile. It is extremely well documented (see e.g. Bates (2000) and 

Foresi and Wu (2005)) that, empirically, equity options typically exhibit only the left 

portion of the volatility smile. That is, implied volatility almost always has a negative 

                                                           
12

 It is interesting that Jackwerth himself does not use option prices to find the subjective 

probabilities. Perhaps this is an attempt to avoid the biases introduced by problems with the 

Black-Scholes formula that this paper will now describe, though Jackwerth does not appear to 

consider these difficulties. 
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slope with respect to strike price. This lopsided implied volatility function is sometimes 

affectionately termed the volatility smirk, a subcategory of the volatility smile. 

 

In any case, the volatility smile/smirk phenomenon indicates that, based on the 

Black-Scholes formula, there is not a single implied volatility to be found. Two related 

implications immediately follow. First, since theory requires that there is one value for 

the volatility of the underlying security, the Black-Scholes formula cannot be correct in 

its current form. Second, if the Black-Scholes formula is not correct, then no matter what 

value is used for the implied volatility, its second derivative with respect to strike price 

will not yield the price of Arrow securities. 

3.2.2 Resolving the Volatility Smile 

In principle, Jackwerth’s procedure (and the method this paper proposes for 

inferring subjective probabilities from option prices) would work if implied volatilities 

were constant. Therefore, one way of improving on both methods would be to somehow 

resolve the volatility smile/smirk. 
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The existence of the volatility smile/smirk indicates that the normal distribution 

used by default in the Black-Scholes formula may not accurately approximate stock 

returns
13

. To be more precise, a volatility smile suggests that the normal distribution does 

not have enough excess kurtosis
14

. Further, the fact that the volatility smile is skewed into 

a smirk, as is the case with equity options, is evidence that the true distribution may be 

skewed as well. 

The Black-Scholes formula is derived from the principle of no-arbitrage, and so 

its basic form is necessarily valid as long as no-arbitrage holds. All inputs besides 

volatility and the probability densities of the underlying security are directly observable, 

so the error must be related to one of these two areas. As the fatness of the tails of the 

subjective distribution increases, so does the expected value of an option with a strike 

price near those tails
15

. Further, the value of an option rises with the volatility of the 

underlying
16

. Since the normal distribution is built into the Black-Scholes formula, any 

“additional” value of an in- or out-of-the-money that is actually due to the true subjective 

distribution having positive excess kurtosis is misattributed to a higher volatility. Thus, in 

                                                           
13

 To clarify, stock returns here refer to the subjective distribution, not the objective distribution, 

which cannot be known. 

 
14

 Kurtosis refers to the fatness of the tails of the distribution as well as the sharpness of the center 

peak. Higher kurtosis means fatter tails and, often but not necessarily, a sharper center peak for 

the distribution. A normal distribution has zero excess kurtosis by construct and is termed 

mesokurtic. A distribution with positive excess kurtosis in comparison with the normal 

distribution is leptokurtic, and one with negative excess kurtosis is platykurtic. 

 
15

 This is because as the tails become fatter, the probability of an extreme move in the underlying 

increases. Increasing the probability of a positive extreme move increases the expected value of 

the option, but increasing the probability of a negative extreme move does not decrease the value 

of the option, because the holder of the option can choose to not exercise. 

 
16

 Again, since an option confers the right, but not the obligation, to trade the underlying, larger 

stock moves mean bigger opportunities but no additional risk.  
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general, the appearance of a volatility smile is evidence that the distribution of security 

returns should be leptokurtic: relatively thicker at the tails than the normal distribution 

allows.  

By similar logic, the downward-trending volatility smirk in equity options 

indicates that the left side of the probability density distribution should have relatively 

fatter tails compared to the right side. This observation indicates that the correct 

distribution should be asymmetric with a negative skew. 

Since the problem with Jackwerth’s use of the Black-Scholes formula appears to 

stem from the fact that the underlying subjective distribution is incorrect, this paper 

proposes to improve his procedure by substituting in a more suitable distribution in place 

of the normal distribution. Three possible candidate distributions are discussed below. 

3.2.2.1 The Student’s T Distribution 

The Student’s t distribution is a simple leptokurtic distribution that has, in the past, 

been empirically shown to be a good descriptor of stock returns (see e.g. Blattberg and 

Gonedes (1974) and Peiró (1994)). Further, Cassidy, Hamp, and Ouyed (2010) have also 

derived a modified version of the Black-Scholes formula that uses the t distribution in 

place of the normal distribution. 

Unfortunately, unlike the normal distribution, the t distribution is not stable
17

, so a 

t distribution that accurately describes 1-day returns cannot be easily scaled to describe n-

                                                           
17

 A distribution is stable if and only if the product of two instances of the distribution is another 

instance of the same distribution. The product of two normal distributions, for example, is also 

normal. 
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day returns. In practice, this problem can be avoided by ensuring that the days to 

expiration for the options is equal to the number of days over which the underlying 

returns are found. 

The normal distribution is easy to use with the Black-Scholes formula due to the 

fact that its form needs no further specification. In contrast, the t distribution requires a 

known value for the degrees of freedom ν. Cassidy (2012) suggests that one could 

potentially approximate the degrees of freedom to be equal to N-1, where N is the 

number of days until expiration of the option. In practice, as Cassidy admits, this will 

likely be an overestimate of the degrees of freedom. This paper proposes an alternative 

method where the degrees of freedom will be chosen
18

 to minimize the variance-to-mean 

ratio
19

 in the resulting implied volatilities for all the different strike prices, following the 

intuition that the correct probability density distribution will eliminate the volatility smile 

and produce a single value for implied volatility. 

Since there does not exist a closed-form for the modified Black-Scholes formula 

using the t distribution as the underlying distribution, the second partial derivative with 

respect to strike price will be found numerically
20

. 

 

 

                                                           
18

 This will be accomplished numerically (see next footnote), to two significant figures. 

 
19

 The variance-to-mean ratio is defined as 
   ( )

 ̅
. 

 
20

 All numeric estimations are conducted with Java algorithms I have written. Particular attention 

is paid to ensuring a high level of accuracy and avoiding rounding errors. 
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3.2.2.2 The Non-central Student’s T Distribution 

While the t distribution does have the desired leptokurticity, it is symmetric, 

which means that it is unable to accommodate the asymmetries suggested by the 

existence of the lopsided volatility smirk. 

De Jong and Huisman (2000) propose that a skewed t distribution may be a good 

approximation for underlying returns for European-style options. The authors find that, 

compared to other popular methods, using their proposed skewed t distribution in 

conjunction with the Black-Scholes model yields the lowest root mean squared error 

between the projected and actual option prices. A skewed t distribution can potentially be 

a more accurate descriptor of security returns, since its asymmetric properties allow it to 

accommodate the skew component of the volatility smirk. A further advantage of the 

skewed t distribution is that nests the standard t distribution, and thus it is guaranteed to 

be capable of providing a fit at least as good as the best fit with the t distribution. 

There are several ways in which the standard t distribution may be “skewed” and 

no general consensus exists on which is the best. While De Jong and Huisman propose 

one particular formulation, this paper will use the non-central t distribution, which is 

skewed by a non-centrality parameter µ, where skewness increases with |µ| and a 

negative value for µ indicates a left skew. Since the non-central t distribution has mean 

µ(√
 

   
)

 ((   )  )

 (  ⁄ )
, it is manually re-centered by that amount to have zero mean when 

used in the Black-Scholes formula. 

As with the symmetric t distribution, the parameters for the non-central t 

distribution will be chosen to minimize the variance-to-mean ratio in the implied 
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volatilities produced. Further, with this underlying distribution, the second partial 

derivative of the Black-Scholes formula will also be calculated numerically. 

3.2.2.3 Distribution of Historical Returns 

A clear weakness of the above method lies in the fact that though the underlying 

returns have been empirically shown to more closely resemble a t distribution, skewed or 

not, than a normal distribution, the t still might not be the correct form. As a consequence, 

the imposition of this distribution – or, in fact, any general form – on the probability 

density function of underlying returns may provoke a worse fit and introduce biases into 

the subsequent analysis. 

This problem may be circumvented with kernel density estimation (which, again, 

is able to produce a probability density function based on frequency data without 

presupposing a functional form for the distribution). Here, the idea would be to 

numerically substitute the kernel density estimate of historical returns found in Section 

3.1.1 into the Black-Scholes formula in the place of the normal distribution. Again, this 

method’s weakness lies in its reliance upon the accuracy of historical returns as an 

estimator of subjective views of future returns. 

3.2.3 Kernel Density Estimation from Option Prices 

Alternatively, one could conceivably circumvent the Black-Scholes formula and 

its related problems altogether by returning to the original method of taking the second 

differences of observed call option prices directly. The difficulty with the second 

differences approach arises from the fact that the strike prices for existing call options on 

the market are 1) not complete, since they are separated by $5-$100 gaps, and 2) 
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unevenly spaced. If these two issues are addressed sufficiently, it may still be possible to 

use this method. 

To understand the first problem, recall from Figure 3.3 that the second difference 

of option prices represents the price of a basket of Arrow securities. Call this basket X. 

Conceptually, this basket of Arrow securities is almost equivalent in value to X′, an 

alternate basket, which can be constructed by flipping and moving the triangular end-

sections (A to A′ and B to B′) of the overall triangle shape in the payoff diagram to form 

a rectangle: 

 

Of course, the values of X and X′ are not exactly the same. The risk-adjustment 

factor is greater for states of the world in which overall wealth is lower
21

. Therefore, the 

price of triangle A should have a higher risk premium than that of A′. Conversely, the 

price of triangle B contains a lower risk premium than price B′. The two effects, since 

                                                           
21

 This follows directly from the idea that the marginal utility of wealth is greater for states of the 

world where level of wealth is lower. 
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they act in opposite ways, somewhat offset each other and reduce the amount of bias 

introduced
22

. Since the difference between the states of the world that correlate to the 

Arrow securities in A and B are relatively close together in terms of wealth, they should 

exhibit similar degrees of realized risk adjustment, and so this paper assumes that the bias 

is small enough that it will not affect the validity of the results. 

A single second difference of option prices thus approximately represents the 

price of a range of Arrow securities of equal proportions. Using the frequency form of 

this constructed data, a smoother shape for the overall probability density function can be 

then found through kernel density estimation. 

 

The uneven distances between strike prices are a problem for the second 

differences of the option prices because they cause the first differences to be 

“mismatched”. Consider Figure 3.6, which shows the first and second differences of 

                                                           
22

 There is bias, not just noise, introduced. Under the assumption that marginal utility function, 

which is proportional to the risk-adjustment factor, is positive-valued, strictly decreasing with 

respect to wealth, and concave-up, the absolute value of the difference between A and A′ will 

always be larger than that of B and B′, since A < B. 
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option prices in a case where three consecutive strike prices are $10, $20, and $25. 

Clearly, if the differences between strikes are inconsistent, the second differences will not 

represent the value of the correct bundle of Arrow securities. 

This can be easily fixed by normalizing the first differences accordingly before 

finding the kernel density estimate. To be precise, if the range of strike prices represented 

by one first difference is n times that of another, then the first can be adjusted by dividing 

by n. Since the end result will be normalized such that the area under the curve sums to 

one, the absolute values do not matter as long as they are properly scaled relative to each 

other. Of course, this will also introduce some error into the data, as the risk-adjustment 

does not scale linearly
23

. However, bias is not necessarily added, especially when the 

entire probability density function is smoothed via kernel density estimation, since any 

particular first difference will serve as the minuend and then the subtrahend in the 

calculation of neighboring second differences
24

. 

3.3 Summary of Methods Used 

First, the subjective probabilities will be estimated through: 

1) the kernel density estimate of historical returns 

2) the Black-Scholes formula, using an optimized non-central t distribution
25
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 This is to say that the marginal risk-adjustment factor, which is the second derivative of the 

utility function, is not constant. 

 
24

 Errors will affect consecutive second differences in opposite directions. Globally, these 

differences should be “averaged out” and should not compromise the overall distribution shape. 

 
25

 Note that the standard t distribution is not used in this paper because it is nested by the non-

central t.  
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Next, the risk-neutral probabilities will be inferred via: 

1) the Black-Scholes formula, using the same optimized non-central t distribution 

2) the Black-Scholes formula, using the kernel density estimate of historical returns 

3) the kernel density estimate of second differences of actual option prices 

Once these probabilities are found, the risk-neutral probabilities will be divided 

by the subjective ones to obtain risk aversion (in the form of the risk-adjustment factor). 

4 Data 

The data used in this paper is the S&P 500 Index and its corresponding European 

options (the SPX). The S&P 500 is chosen because, as a capital-weighted index of 500 

large-cap stocks traded on the NYSE or NASDAQ, it offers a good representation of 

overall market conditions and is well-protected against turbulence due to company-

specific factors. 

Since this is essentially a cross-sectional study, two dates are selected for analysis, 

one before and one after the financial crisis. May 16, 2007 is chosen as the pre-crash date, 

and May 20, 2009 as the post-crash. The pre-crash date is selected to slightly precede the 

beginning of the crash, marked by the collapse of two Bear Stearns hedge funds in July of 

2007, when the VIX, the S&P volatility index, showed a substantial increase. Likewise, 

the post-crash date is set to coincide with the return of VIX to volatile pre-crash levels 

and before the Greek debt crisis in April of 2010.  Both dates are roughly in the same 

time of year so as to control for possible seasonal fluctuations in risk aversion. The 
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specific dates, the 16
th

 and the 20
th

, are selected because they are exactly one month 

before the expiration of June options
26

 for their respective years. 

To infer the option-implied subjective and risk-neutral probabilities through the 

Black-Scholes formula, only the strike prices with the more liquid
27

 contracts are used to 

reduce noise from pricing errors. These contracts are chosen as the longest possible series 

of consecutive strikes around the current spot price where the volume moved on options 

of each strike is at least 100
28

 on the date in question. To further reduce the effect of 

possible mispricings, the option price used is taken as the average between the bid and 

ask prices at market close. 

To estimate risk-neutral probabilities directly from the second derivative of option 

prices, on the other hand, requires having as complete a set of strike prices as possible in 

order to capture the full range of returns. Thus, call options with all publicly traded strike 

prices for the SPX on the examined dates are used. Without the liquidity criterion 

described above, it is possible that some option prices are noisy due to mispricing. These 

pricing errors sometimes lead to apparent arbitrage opportunities and, sometimes, a 

negative second difference. To combat this problem, this paper follows Jackwerth’s 

example of removing certain strikes to eliminate arbitrage opportunities while 

                                                           
26

 June, as it is both a monthly and a quarterly expiration date, is one of the more popular 

contracts to trade and thus would offer relatively more liquidity. 

 
27

 Since there is no single clear measure of liquidity, volume traded is used as proxy. 

 
28

 A single option contract entails rights to 100 shares of the underlying, so a volume of 100 is 

equivalent to 10,000 “shares” of the S&P 500 Index. While this cutoff may seem arbitrary, it does 

seem to give a sufficiently large range of usable strike prices and eliminate the contracts that 

show obvious signs of inconsistent pricing. 
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maximizing the number of strike prices retained. Finally, the mid-market price is still 

used as the option price. 

For the kernel density estimate of historical returns, the S&P 500 Index returns 

are taken – as they were in Jackwerth’s study – over a period of four years before each of 

the two aforementioned dates. While this seems to be a rather arbitrary length of time, 

Jackwerth points out that changing the time horizon does not drastically alter the results 

obtained. Monthly returns are taken in order to match the time to expiration in the options 

studied. Four years of historical data gives 48 non-overlapping monthly returns, which is 

certainly not an abundance of data points and may cause some irregularities in the results. 

The mean of historical returns used to center the option-implied subjective 

distribution is taken from the geometric mean of large company stock returns from 1926 

to 2010 (Ibbotson (2012)). During this period, the geometric mean of annualized returns 

is 9.9%, which implies 1-month returns of 2.86%
29

. 

The risk-free rate is assumed to equal the three-month treasury rate on each date, 

which is 4.75% pre-crash and 0.18% post-crash. 

5 Subjective Probabilities 

5.1 Historical Realized Returns 

Figure 5.1 presents the probability density function derived from monthly 

historical returns for the S&P 500 during the four years prior the pre- and post-crash 

dates. The distributions shown here are largely consistent with expectations. 

                                                           
29

 This calculation assumes that the returns follow a stable distribution. However, even if this 

assumption does not hold, the error introduced should not be significant. 
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Pre-crash, returns appear to be almost normally-distributed, with relatively low 

variance (σ = 0.029) and kurtosis (2.415
30

). By comparison, the distribution of post-crash 

returns exhibits higher variance (σ = 0.063) and kurtosis (6.932). The increased variance 

is evident both in the way the distribution covers a wider range of values for returns and 

in the fact that the peak of the distribution reaches a much lower density. The greater 

kurtosis can be seen in the thickened – though uneven
31

 – tails of the post-crash 

distribution. These differences between the pre- and post-crash distributions indicate that 

S&P 500 returns were more volatile during the four years prior to the post-crash date than 
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 Since the normal distribution has a kurtosis of 3, this distribution, with its kurtosis of 2.415, is 

actually platykurtic. This counterintuitive result may be a consequence of the small sample size 

used. 

 
31

 This jaggedness in the kernel density estimate is due to the unfortunate, yet unavoidable, small 

sample size. 
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during the time frame before the pre-crash date. This is entirely unsurprising, as a 

financial crisis is characterized by large movements in market prices. 

Further, there are different degrees of negative skew apparent in both subjective 

distributions (-0.149 and -1.196 for pre- and post-crash, respectively), which is consistent 

with general empirical findings
32

. More importantly, this result is consistent with the 

existence of the skewed volatility smirk when using the normal distribution, which has 

zero skew, as the underlying subjective distribution in the Black-Scholes formula (recall 

from Section 3.2.2 that the left-sided smirk indicates that the proper distribution should 

have a heavier tail on the left side). 

There is some apparent multimodality in the post-crash distribution, which is 

unexpected as returns are generally thought to be unimodal. This anomaly most likely 

results from the fact that with a sample size of only 48, it is quite possible for the sample 

to be not perfectly representative of the population. The kernel density estimate, of course, 

becomes unimodal when a sufficiently large bandwidth is used in the estimation. 

5.2 Option-Implied Distribution 

5.2.1 Optimal Parameters 

The shape of the non-central t distribution is controlled by two parameters: 

degrees of freedom ν and non-centrality µ. As mentioned in Section 3.2, there is no way 

to directly calculate appropriate values for ν and µ, so a pair of “optimal” ν and µ is 

chosen to minimize the variance-to-mean ratio of the implied volatilities that result from 
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 Though there exists a large volume of empirical literature directed at attempting to explain this 

phenomenon (see e.g. Pindyck (1984) and Hong and Stein (2003)), no consensus appears to have 

been reached. 
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using the non-central t distribution defined by those parameters as the subjective 

probability distribution in the modified Black-Scholes formula. 

The following table shows the variance-to-mean ratios (VTM) of the resulting 

implied volatilities when the specified distribution is used in the Black-Scholes formula. 

Three distributions are listed below for both pre-crash and post-crash: 1) the optimal non-

central t distribution for that time period, 2) the optimal non-central t distribution for the 

other date, and 3) the normal distribution. The latter two distributions are included to 

provide contrast and a basis for evaluating the optimal distribution. 

Table 5.1. Variance-to-mean ratios of potential subjective distributions. 

 Distribution ν µ VTM 

P
re

 

 

non-central t 

(optimal) 
6.00 -2.05 1.724×10

-5
 

non-central t 

(post-crash) 
5.08 -1.17 2.404×10

-4
 

normal ∞ 0 7.502×10
-4

 

P
o
st

 

 
non-central t 

(optimal) 
5.08 -1.17 1.262×10

-4
 

 
non-central t 

(pre-crash) 
6.00 -2.05 2.573×10

-3
 

 normal ∞ 0 1.093×10
-3

 

 

There are several important observations to be made here. First, the optimized 

non-central t distribution always gives implied volatilities with variance-to-mean ratios 

substantially lower than those from the normal distribution. This is a good indication that 

the non-central t does, in fact, provide a better fit for underlying returns. Next, the 
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variance-to-mean ratios in the post-crash period are always higher than their pre-crash 

counterparts. This phenomenon likely results from the post-crash option prices containing 

more noise (variation)
33

. Finally, a non-optimal non-central t distribution could provide a 

considerably worse fit. During the post-crash period, the optimal pre-crash non-central t 

managed to generate implied volatilities with a variance-to-mean ratio more than double 

that of implied volatilities found by using a normal distribution. 

5.2.2 Volatility Smile 

 

Figure 5.2 compares the implied volatilities found through using the optimized 

non-central t distribution versus the normal distribution in the Black-Scholes formula. As 
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 A higher variance-to-mean ratio could also signify that the same distributions from the pre-

crash period are no longer good approximations of subjective probabilities. However, as Figure 

5.2 on the next page shows, the optimal non-central t distribution does remove the volatility smile, 

which shows that it is an appropriate distribution to use. 
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is clearly evident, using the non-central t distribution in the Black-Scholes formula 

greatly reduces, if not completely eliminates, the volatility smirk that results from using 

the normal distribution. This fact is a good indication that the subjective and risk-neutral 

probabilities derived from these non-central t distributions will be much more accurate 

than those found using the normal distribution. 

Further, the implied volatilities on the pre-crash date seem to be much less 

“scattered” in comparison with their post-crash counterparts. This observation is also 

consistent with the fact that the variance-to-mean ratio for the pre-crash implied 

volatilities is significantly lower than that of the post-crash ones. The fact that there 

seems to be much more noise in option pricing after the crash could be a symptom of 

general crash-induced confusion – perhaps market participants had very different 

subjective probabilities in mind, and those probabilities were not aggregated coherently 

on the market. 

Finally, it is slightly disconcerting to see that the normal distribution-induced 

volatility smile curves upward to such an extent. This defies general empirical 

observations of equity volatility smiles. However, it is quite possible that the liquidity 

criteria for the data has managed to cut off the left side of the smirk – the underlying 

price on the post-crash date is $903.47, which is at the left edge of the graph, and options 

with strikes lower than $900 have not been used due to surprisingly low volume
34

. 
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 Call options with a strike of 895 – one level down from 900 – traded a total of 0 contracts that 

day, compared to 11679 contracts traded of the 900 call. This is actually not too unexpected; it is 

entirely conceivable that during the recovery period after a crash, market participants anticipate 

very high returns and so strike prices of less than the spot price become largely irrelevant. 
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Alternatively, it may be that after the crash, market participants expected a strong 

recovery, and thus their subjective probability distribution has a large positive skew. 

5.2.3 Distribution 

 Using the parameters obtained for ν and µ through the aforementioned 

optimization process in conjunction with the average value of the implied volatilities 

from Section 5.2.2 (0.116 and 0.265 for pre- and post-crash, respectively), the following 

subjective distributions are derived: 

 

The standard deviation, skew, and kurtosis of these two distributions and the two 

distributions found from historical returns are summarized together in the following table 

for comparison. 
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Table 5.2. Moments of historical and option-implied subjective distributions. 

 Method st. dev. skew kurtosis 

P
re

 historical 0.029 -0.149 2.415 

option-implied 0.033 -1.333 7.503 

P
o
st

 historical 0.063 -1.196 6.932 

option-implied 0.077 -1.179 7.828 

 

It is interesting to see that the option-implied and historical subjective 

distributions are much more similar in the post-crash than the pre-crash. Perhaps this 

difference is due to small-sample bias affecting the kernel density estimate of the pre-

crash historical returns more than the post-crash ones. This explanation would be 

consistent with the observation that the pre-crash historical distribution is unexpectedly 

platykurtic. The subjective distributions derived from option prices and from four-year 

historical returns are illustrated together in Figure 5.4. 

 As Figure 5.4 illustrates, while the shapes of the two subjective distributions are 

quite similar for both pre- and post-crash data, there is also a definite degree of mismatch 

between them, consistent with the fact that the distributions have different variance, skew, 

and kurtosis
35

. Most notably, the peak of the option-implied distribution is higher than 

that of the historical returns pre-crash but is lower post-crash. These differences, while 

substantial, are not necessarily cause for alarm. One possible reason for the discrepancy 

is that it is impossible to fit a non-central t distribution (or any formal distribution, for 

that matter) perfectly to the idiosyncrasies in the historical data. For instance, the bumps 
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 Undoubtedly, they are also centered on different means, since a 4-year historical mean is 

certainly not the same as an 84-year mean. The difference is especially pronounced for the post-

crash distributions, since much of the 4 years sampled included the financial market collapse. 
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in the tails of kernel density estimates of the post-crash historical returns make the overall 

distribution distinctly multimodal, which is a characteristic that the unimodal non-central 

t cannot accommodate. The differences in the two sets of distributions may also be a 

symptom of historical performance being an imperfect predictor of future expectations, 

especially in regards to the mean of returns. In this case, the option-implied subjective 

probabilities are likely to be more accurate than the historical ones. 

6 Risk-Neutral Probabilities 

6.1 Non-Central T Distribution 

By using the non-central t distribution with parameters ν and µ as the subjective 

distribution of underlying returns in the Black-Scholes formula (as discussed in the 

previous section), it is now possible to infer the risk-neutral probabilities from option 
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prices. These risk-neutral probability densities for both the pre- and post-crash dates are 

shown below. 

 

Table 6.1. Moments of subjective and risk-neutral distributions. 

 Distribution st. dev. skew kurtosis 

P
re

 

risk-neutral 0.033 -1.169 6.857 

subjective 

(option-implied) 
0.033 -1.333 7.503 

subjective 

(historical) 
0.029 -0.149 2.415 

P
o
st

 

risk-neutral 0.074 -0.651 5.924 

subjective 

(option-implied) 
0.077 -1.179 7.828 

subjective 

(historical) 
0.063 -1.196 6.932 
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As Table 6.1 shows, the standard deviation, skew, and kurtosis of the option-

implied risk-neutral distributions are much more similar to the option-implied subjective 

distributions than the historical-derived ones. This could be seen as evidence that the 

historical returns are not good estimators of the subjective distribution. However, it is 

important to remember that nothing requires that the risk-neutral and subjective 

distributions be similar. 

6.2 Kernel Density Estimate of Realized Returns 

A second method for inferring risk-neutral probabilities still uses the Black-

Scholes formula but replaces the non-central t distribution from Section 6.1 with the 

kernel density estimate of the historical returns found in Section 5. In order to use the 

kernel density estimate in the formula, it is first normalized to have a standard deviation 

of one (while ensuring that the area under the curve is still one). This step ensures that the 

σ in the Black-Scholes formula still represents the volatility of the underlying
36

. 

The implied volatilities found through this method have substantially higher 

variance-to-mean ratios (3.155×10
-4

 for pre-crash and 1.663×10
-3

 for post-crash) than 

those found using the optimal non-central t distribution. In fact, in both pre- and post-

crash, these variance-to-mean ratios fall in between those generated by using the normal 

distribution and the non-optimal non-central t distribution (see Table 5.1). The fact that 

these variance-to-mean ratios are so comparatively high seems to indicate that historical 

returns are not accurate estimators of subjective probabilities. 
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 σ is actually the scaling factor between the standard deviation of the underlying and that of the 

subjective probability distribution used in the formula. Thus, σ is only equal to the volatility of 

the underlying when the latter is 1. 
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This hypothesis is corroborated by Figure 6.2, which plots the implied volatilities 

against their strike prices and reveals a volatility smile. The existence of the volatility 

smiles in both pre- and post-crash data is further evidence that the historical distributions 

are extremely poor approximations for the subjective distribution. As such, this method is 

not used to infer risk-neutral probabilities, since any results obtained via this method are 

likely to be incorrect
37

. 

 

6.3 Direct Kernel Density Estimation with Option Prices 

The third and final method of inferring risk-neutral probabilities involves finding 

the kernel density estimate of the second differences of option prices directly, after 

removing the contracts that provide arbitrage opportunities. The results are shown below.  

                                                           
37

 At the very least, it will be difficult to justify the selection of any one value as the implied 

volatility, since there is such clear evidence that implied volatility varies with strike price. 
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While the inferred post-crash distribution is smooth and unimodal as anticipated, 

the pre-crash risk-neutral distribution shows artifacts of pricing noise. The extremely 

bumpy left tail and the additional peak in the middle of the distribution are all results of 

inconsistent pricing resulting in great variance between consecutive second derivatives. 

In its current state, the kernel density estimate of second differences is clearly not a good 

approximation of the actual risk-neutral distribution. Of course, increasing the smoothing 

parameter will reduce the unevenness of the kernel density estimate, but it will also 

distort the overall shape and compromise the accuracy of the result.  

 

The bumpiness of the pre-crash distribution does go towards justifying methods 

where option prices are “smoothed” via the Black-Scholes model. Those methods will at 

least give a smooth, unimodal curve that can be used intelligibly to find risk aversion. 
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Further, if the correct distribution is used to describe underlying returns (which can be 

checked by looking for a volatility smile), then the results should not be biased either. 

Incidentally, it is interesting that the post-crash risk-neutral distribution here does 

not suffer the same problem. This is surprising, since, as Figures 5.2 and 6.2 demonstrate, 

the implied volatilities found for the post-crash option data were much noisier than those 

for the pre-crash regardless of the underlying subjective distribution used. 

7 Risk Aversion / Results 

Finally, now that both subjective and risk-neutral probabilities have been 

estimated, it is possible to infer risk aversion. Since there are many indications to support 

the hypothesis that historical returns are, in fact, not a good indicator of future 

expectations, the subjective probabilities inferred through the Black-Scholes formula with 

the optimized non-central t distribution are used. The risk-neutral probabilities used are 

estimated through the same modified Black-Scholes formula. This choice is due to the 

fact that the pre-crash risk-neutral probabilities found directly from the second 

differences of option prices contained unrealistic bumps that could not be eliminated 

without introducing additional errors, and using the Black-Scholes formula with the 

historical distribution created such obvious trends in implied volatility that risk-neutral 

probabilities were not even calculated. Figures 7.1 and 7.2 show the non-central t option-

implied subjective and risk-neutral probabilities for the pre-crash and post-crash data, 

respectively. 
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There are several important areas of note in Figure 7.1. First, the shapes of the 

subjective and risk-neutral probabilities are almost identical, just offset horizontally. This 

is not surprising, as the risk-neutral probabilities here are derived from option prices 

synthetically generated by assuming the very same subjective probabilities. Second, the 

risk-neutral distribution is higher than the subjective distribution for low returns and 

lower than it for high returns. This observation coincides with the fact that marginal 

utility – here as the ratio of risk-neutral to subjective probability – should be higher for 

lower levels of wealth, and vice versa. Finally, the risk-neutral probability associated 

with excess returns of 0 is higher than the related subjective probability. This makes 

sense, since individuals are thought to be willing to pay a risk premium to avoid a 

situation where there is risk (variance in returns) but no expected gain (no excess returns). 

All things considered, the situation portrayed by Figure 7.1 is consistent with theory. 
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Figure 7.2 illustrates a situation for the post-crash data similar to that shown in 

Figure 7.1 for the pre-crash. This is particularly interesting, as Jackwerth finds that, while 

risk aversion seemed normal before the crash of 1987 (the focus of his study), market 

participants actually became risk-seeking following the crash. The main difference 

between the method used in this paper and that used by Jackwerth is that his subjective 

probabilities are inferred from historical returns, not from option prices (as they are here). 

Clearly, since post-crash historical returns incorporate a large portion of the downward 

momentum realized during the crash, Jackwerth’s subjective distribution will likely be 

biased leftward. If the left-offset is large enough, it is conceivable that the subjective 

distribution could be placed to the left of the risk-neutral one, thus giving apparent 

evidence of risk-seeking tendencies in the market. Thus, it is quite possible that 
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Jackwerth’s alarming findings regarding post-crash risk aversion are actually results of an 

oversight in methodology. 

Dividing the risk-neutral probabilities by the subjective probabilities produces the 

inferred risk-adjustment factors, which, again, are directly correlated with marginal utility. 

 

First, Figure 7.3 shows that, contrary to theory, marginal utility is not strictly 

decreasing with respect to wealth
38

. Second, in the range of x-values where the functions 

are strictly decreasing, the pre-crash exhibits steeper slope than does the post-crash. This 

indicates decreased risk aversion following the 2008 financial crisis, since a smaller risk 

premium is paid to avoid an equal loss of wealth. This apparent result is unexpected: it is 
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 If Figure 7.3 is cropped in the x-axis as Jackwerth does in his paper, then marginal utility will 

appear to be strictly decreasing. 
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contrary to both the general theoretical assumption that the utility function is constant 

over time and the hypothesis that risk aversion increases following a crash. 

8 Concluding Remarks 

Section 7 briefly hints at the tentative conclusion that, of the different methods 

outlined in the beginning of this paper, the subjective and risk-neutral probabilities are 

perhaps best
39

 estimated through the use of the Black-Scholes formula modified to 

assume a non-central t distribution as the underlying subjective distribution. 

The obvious advantage of using an option-implied method for finding the 

subjective distribution is that it reduces the reliance on the assumption that actualized 

returns are a good approximation of expectations of future returns. As the results above 

suggest, this advantage may be substantial, since the historical and option-implied 

subjective distributions differ to a great extent. The fact that the optimized non-central t 

distribution does not seem to be producing an obvious volatility smile increases 

confidence that it is, in fact, an appropriate distribution to use. Regarding the risk-neutral 

probabilities, using the non-central t distribution with the Black-Scholes formula is 

clearly superior to using the kernel density estimate of historical returns, since the latter 

produces a visible volatility smile. Additionally, the kernel density estimation of the 

second differences of option prices is not a good alternative, as it suffers from too much 

pricing noise. Thus, it is best to use the Black-Scholes formula with the non-central t 

distribution. 

                                                           
39

 “Best” here is used with consideration to both the accuracy of the estimate and the usability of 

result in the specific context of inferring risk-aversion. 
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Using these distributions, this paper then finds that risk aversion decreased 

between the pre- and post-crash dates. However, this result is subject to a significant 

objection: it is quite possible that, since 1) historical returns are far from guaranteed to 

produce an accurate estimate of future outlook and 2) the subjective distribution is 

centered on the historical mean, the subjective distribution is not correctly placed. If, for 

instance, market participants expect that the market will exhibit higher-than-average 

returns as part of the recovery process following the financial crisis, then the post-crash 

subjective distribution would actually be shifted farther to the right of its current location. 

If the magnitude of this move is sufficiently large, then it could result in greater risk 

aversion than is found in the pre-crash data. Unless there is a more accurate way to 

estimate the mean of the subjective distribution, any results derived from it are tenuous at 

best. 

Though a definitive conclusion regarding changes in risk aversion as a result of the 

financial crisis is not reached, this paper does make several important contributions.  First 

and most significantly, it has found better methods for inferring subjective and risk-

neutral probabilities from option prices (though there still needs to be a more accurate 

way to determine the mean of the subjective distribution, the option-implied method is 

still an improvement over using historical returns).  As part of this process, the paper 

finds that using a non-central t distribution instead of the normal distribution in the 

Black-Scholes formula can largely reduce the volatility smile problem. Finally, this paper 

shows that the apparent evidence of risk-seeking behavior that Jackwerth finds may be 

due to an error in his method. 
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