Elementary Vector Analysis: Preliminaries

(from Stewart, Calculus, Chapters 12 and 13)
Three-Dimensional Coordinate Systems

FIGURE 2
Right-hand rule
$\underline{\text { Right hand rule: } \text { to choose an orientation on } \mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}, ~}$
Curl fingers around the z-axis in the direction off a counterclockwise rotation from the positive x-axis to the positive y-axis. The thumb points up in the direction of the positive z-axis.

Coordinate planes

The first octant is determined by the positive axes.

$\underline{\text { How to plot a point }}$

Move a units along the x-axis then move b units parallel to the y-axis then c units parallel to the z-axis.

The Distance Formula
Two dimensions: The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Three dimensions: The distance between two points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

FIGURE 1

Equivalent vectors

A vector is a quantity that has both a magnitude and a direction.
$\vec{v}=\overrightarrow{A B}$ has initial point A and terminal point B.

Two vectors with the same length and direction are equivalent, regardless of their position in space, i.e. $\vec{v}=\vec{u}$.

The zero vector $\overrightarrow{0}$ has length 0 and no specific direction.

Vector Addition

FIGURE 3 The Triangle Law

FIGURE 4 The Parallelogram Law

Scalar multiplication

If $c \in \mathbb{R}$ is a scalar and \vec{v} is a vector, the scalar multiple $c \vec{v}$ is the vector whose length is $|c|\|\vec{v}\|$ and whose direction is the same as \vec{v} if $c>0$ and is opposite to \vec{v} if $c<0$. If $c=0$ or $\vec{v}=0$ then $c \vec{v}=\overrightarrow{0}$.

Two nonzero vectors are parallel if and only if they are scalar multiples of each other.

Vector subtraction
$\vec{u}-\vec{v}=\vec{u}+-\vec{v}$

(a)

(b)

Vector Components

If a vector \vec{a} has its initial point at the origin $(0,0,0)$ and its terminal point at $P=\left(a_{1}, a_{2}, a_{3}\right)$, we write $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and call \vec{a} the position vector of the point P.

Length or Magnitude of a vector is the distance between its initial and terminal points.

Two dimensions: $\quad\|\vec{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}}$

FIGURE 13
Representations of $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$

A unit vector is a vector with length one. The vector $\vec{u}=\frac{\vec{a}}{\|\vec{a}\|}$ is a unit vector in the direction of the vector \vec{a}.

Vector Algebra: Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{2}\right\rangle$ and $c \in \mathbb{R}$. Then
(1) $\vec{a}+\vec{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle$
(2) $\vec{a}-\vec{b}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right\rangle$
(3) $c \vec{a}=\left\langle c a_{1}, c a_{2}, c a_{3}\right\rangle$

Standard Basis Vectors: $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$

(a)

$$
\vec{i}=\langle 1,0\rangle, \vec{j}=\langle 0,1\rangle
$$

(b)
$\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle, \vec{k}=\langle 0,0,1\rangle$

Properties of Vectors
If \vec{a}, \vec{b}, and \vec{c} are vectors and s and t are scalars, then

- $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
- $\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
- $\vec{a}+\overrightarrow{0}=\vec{a}$
- $\vec{a}+(-\vec{a})=\overrightarrow{0}$
- $\mathrm{s}(\vec{a}+\vec{b})=s \vec{a}+s \vec{b}$
- $(s+t) \vec{a}=s \vec{a}+t \vec{a}$
- $(s t) \vec{a}=s(t \vec{a})$
- $1 \cdot \vec{a}=\vec{a}$

The Dot Product: $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Properties of the Dot Product: If $\vec{a}, \vec{b}, \vec{c}$ are vectors and s is a scalar, then
(1) $\vec{a} \cdot \vec{a}=\|\vec{a}\|^{2}$
(2) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
(3) $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
(4) $(s \vec{a}) \cdot \vec{b}=s(\vec{a} \cdot \vec{b})=\vec{a} \cdot(s \vec{b})$
(5) $\overrightarrow{0} \cdot \vec{a}=\overrightarrow{0}$

Theorem. Let $0 \leq \theta \leq \pi$ be the angle between the vectors \vec{a} and \vec{b}. Then

$$
\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta
$$

$\mathbf{a} \cdot \mathbf{b}>0$
θ acute

$\mathbf{a} \cdot \mathbf{b}=0$
$\boldsymbol{\theta}=\pi / 2$
Corollary. Two nonzero vectors \vec{a} and \vec{b} are orthogonal (perpendicular) if and only if $\vec{a} \cdot \vec{b}=0$.

The Cross Product

Recall the determinant of a 2×2 matrix is $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
The cross product of two vectors $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ in \mathbb{R}^{3} is

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k} \\
& =\left\langle a_{2} b_{3}-a_{3} b_{2},-\left(a_{1} b_{3}-a_{3} b_{1}\right), a_{1} b_{2}-a_{2} b_{1}\right\rangle
\end{aligned}
$$

Geometric Interpretations of the Cross Product
(1) $\vec{a} \times \vec{b}$ is a vector orthogonal to both \vec{a} and \vec{b}, pointing in the direction determined by the

right hand rule.
(2) $\|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\| \sin (\theta)$ where $\theta \in[0, \pi]$ is the angle between \vec{a} and \vec{b}.
(3) $\|\vec{a} \times \vec{b}\|$ is the area of the parallelogram with sides \vec{a} and \vec{b}.

Corollary. Two nonzero vectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b}=\overrightarrow{0}$.
Algebraic Properties of Cross Product: Let $\vec{a}, \vec{b}, \vec{c} \in V_{3}$ and $s \in \mathbb{R}$. Then
(1) $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
(2) $(s \vec{a}) \times \vec{b}=s(\vec{a} \times \vec{b})=\vec{a} \times(s \vec{b})$
(3) $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})$
(4) $(\vec{a}+\vec{b}) \times \vec{c}=(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c})$
(5) $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c}$

