\author{

1. Elementary Vector Analysis \\ (from Stewart, Calculus, Chapters 12 and 13)
}

Vectors, Points, and Position Vectors: The position vector of a point P is the vector from the origin to P. For example, in \mathbb{R}^{3}, a vector $\vec{v}=\langle x, y, z\rangle$ is the position vector of the point $P=(x, y, z)$. In this way, we often identify points as vectors and vice versa.

Parametrized Curves

Parametrized Curves: Given a continuous vector function $\vec{r}(t)=\langle x(t), y(t)\rangle$ or $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$, the set of points with position vector $\vec{r}(t)$ for some t defines a curve C. The components $x(t), y(t)$, and $z(t)$ are called parametric equations for the parametrized curve C. The variable t is called the parameter.

The tangent vector to a curve at the point $P=\vec{r}(t)$ is $\overrightarrow{r^{\prime}}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ or $\overrightarrow{r^{\prime}}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$. The line through the point $P=\vec{r}(t)$ parallel to the vector $\overrightarrow{r^{\prime}}(t)$ is called the tangent line to C at P.

Ex. 1. (a) Sketch the curve C with parametric equations $x(t)=t+1, y(t)=t^{2}-2 t,-1 \leq t \leq 3$.
(b) Show that C is an arc of the parabola $y=x^{2}-4 x+3$ and use this fact to give another parametrization of C.

t	x	y
-1	0	3
0	1	0
1		
2		
3		

b) we have $x=t+1$ and $y=t^{2}-2 t$

$$
\text { so } t=x-1 \text {. Substituting into } y /
$$

$$
y=(x-1)^{2}-2(x-1)
$$

$$
=x^{2}-2 x+1-2 x+2
$$

Ex. 2. What curve is represented by the parametric equations?
(a) $x(t)=2 \cos (t), y(t)=2 \sin (t), 0 \leq t \leq 2 \pi$
(b) $x(t)=\sin (2 t), y(t)=\cos (2 t), 0 \leq t \leq 2 \pi$

(c) Compute the tangent vector to the curve $\vec{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle$ and show that it is perpendicular to the curve at any point $(x(t), y(t))$.
The tangent rector is $\vec{r}^{\prime}(t)=\langle-2 \sin (t), 2 \cos (t)\rangle$. For any, t, $\vec{r}(t) \cdot \vec{r}^{\prime}(t)=\langle 2 \cos t, 2 \sin t\rangle \cdot\langle-2 \sin t, 2 \cos t\rangle=-4 \sin t \cos t+4 \sin t \cos t=0$. So, $\vec{r}(t) \perp \vec{r}^{\prime}(t)$ at any t.

Vector Equation: $\vec{r}(t)=\underline{\overrightarrow{r_{0}}}+t \underline{\vec{v}}$
$\underline{\text { Parametric Equations: }} x(t)=\underline{x_{0}}+\underline{a} t, y(t)=\underline{y_{0}}+\underline{b} t, z(t)=\underline{z_{0}}+\underline{c} t$

$\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ are the position vectors of the points $(x(t), y(t), z(t))$ on the line $\overrightarrow{r_{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ is the position vector of a fixed point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line $\vec{v}=\langle a, b, c\rangle$ is a direction vector of the line, i.e. \vec{v} is any vector parallel to the line
$\mathbf{R m k}$. For lines in \mathbb{R}^{2}, just delete all of the third coordinates above.

Ex. 3. Find parametric equations for the line that passes through the points $(2,0,1)$ and $(-1,1,-1)$.

$$
\begin{aligned}
\vec{V} & =\langle 2-(-1), 0-1,1-(-1)\rangle \text { (terminal pt - initial pt) } \\
& =\langle 3,-1,2\rangle \\
\overrightarrow{r_{0}} & =(-1,1,-1) \\
X & =-1+3 t, y=1-t, z=-1+2 t \text { (is one possible answer) }
\end{aligned}
$$

Ex. 4. Find parametric equations for the line segment from $(3,1,2)$ to $(-5,4,1)$.

$4,1)$

$$
\begin{aligned}
\stackrel{\rightharpoonup}{V} & =\langle-5-3,4-1,1-2\rangle \\
& =\langle-8,3,-1\rangle \\
\vec{r}_{0} & =\langle 3,1,2\rangle \\
x & =3-8 t, y=1+3 t, z=2-t, \quad 0 \leq t \leq 1
\end{aligned}
$$

Ex. 5. Find parametric equations for the line that passes through the point $(2,0,1)$ and is parallel to the line given by parametric equations $x(t)=3 t, y(t)=-5$, and $z(t)=t+4$.

$$
\begin{aligned}
& \vec{r}_{0}=\langle 2,0,1\rangle \\
& x=2+3 t, y=0, z=1+t
\end{aligned}
$$

Ex. 6. Find parametric equations for the tangent line to the parametrized curve $x(t)=t+1, y(t)=t^{2}-2 t$, at the point $(0,3)$.

$$
\stackrel{\rightharpoonup}{V}=\text { tangent vector at }(0,3)
$$

$$
\vec{r}(t)=\left\langle t+1, t^{2}-2 t\right\rangle
$$

$\vec{F}^{\prime}(t)=\langle 1,2 t-2\rangle$ is the tangent vector

$$
A+(0,3), x=0=t+1 \Rightarrow t=-1 \quad \text { (Check } y=1+2=3 \text {) }
$$

So $\vec{V}=\vec{r}^{\prime}(-1)=\langle 1,-4\rangle$
And $\vec{r}_{0}=\langle 0,3\rangle$ so the tangent line is parametrized by

$$
x=t, y=3-4 t
$$

Planes in \mathbb{R}^{3}

$$
\begin{aligned}
\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right) & =\langle a, b, c\rangle \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle \\
& =a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right) \\
& =0 \quad \text { bc. } n \perp 1+\vec{r}-\vec{r}_{0}
\end{aligned}
$$

Scalar Equations: $\vec{r}-\vec{r}_{0}$ is always parallel to the plane

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \quad \text { So } \vec{n} \perp \vec{r}-\vec{r}_{0}
$$

or

$$
a x+b y+c z=d
$$

$\vec{r}=\langle x, y, z\rangle$ are the position vectors of points (x, y, z) in the plane
$\overrightarrow{r_{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ is the position vector of a fixed point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the plane
$\underline{\vec{n}}=\langle a, b, c\rangle$ is the normal vector, ie. any vector orthogonal to the plane

Ex. 7. Find an equation of the plane that passes through the point $(1,1,0)$ and is perpendicular to the line with parametric equations $x(t)=2+3 t, y(t)=1-t, z(t)=2+2 t$.

\vec{V} is parallel to the line and hence also perpendicular to the plane.
So let $\vec{n}=\vec{v}=\langle 3,-1,2\rangle$. and $\vec{r}_{0}=\langle 1,1,0\rangle$. Then
$3(x-1)+-1(y-1)+2(z)=0$ is an eq. of or $3 x-y+2 z=2$ the plane.

Ex. 8. Find an equation of the plane that passes through the points $(1,0,2),(4,2,3)$, and $(2,0,4)$. $(1,0,2)$

The three points determine a triangle and hence a
 plane containing that triangle.
The vectors $\vec{v}=\langle 4-1,2-0,3-2\rangle=\langle 3,2,1\rangle$ and

$$
\vec{w}=\langle 2-1,0-0,4-2\rangle=\langle 1,0,2\rangle
$$

$(4,2,3)$
are parallel to the plane and so $\vec{n}=\vec{V} \times \vec{w}$ is 1 to plane.

$$
\left.\vec{v} \times \vec{w}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 2 & 1
\end{array}\right|=(2 \cdot 2-1 \cdot 0) \vec{\imath}-(3 \cdot 2-1 \cdot 1) \vec{\jmath}+(3 \cdot 0-1 \cdot 2) \vec{k}\right)
$$

Then an eq. of the plane is $4(x-1)-5(y)-2(z-2)=0$.
or $4 x-5 y-2 z=0$

Ex. 9. Find an equation of the plane that passes through the point $(1,0,2)$ and contains the line

$$
x=2 t+2, y=2 t, z=4-t
$$

The vector $\vec{V}=\langle 2,2,-1\rangle$ is parallel to the plane.
Letting $t=0$, the point $(2,0,4)$ is on the line and hence in the plane. Then the vector $\vec{W}=\langle 2-1,0-0,4-2\rangle=\langle 1,0,2\rangle$ is also parallel to the plane. So, $\vec{n}=\vec{\gamma} \times \vec{w}$ is \perp to the plane.

$$
\begin{aligned}
& \vec{v} \times \vec{w}\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 2 & -1 \\
1 & 0 & 2
\end{array}\right|=4 \vec{\imath}-(4+1) \vec{\jmath}+-2 \vec{k} \\
& \text { Then an eq. of the fla }
\end{aligned}
$$

Then an eq. of the plane is $4(x-1)+-5 y-2(z-2)=0$. or $4 x-5 y-2 z=0$

Ex. 10. Find parametric equations for the line of intersection for the two planes $2 x+y+z=8$ and $x+2 y-z=1$.
$\vec{h}_{1}=\langle 2,1,1\rangle$ is \perp to plane 1 and hence
 also the the line of intersection, since it is contained in plane 1.
Similarly, $\vec{n}_{2}=\langle 1,2,-1\rangle$ is also perpendicular to the line. Hence, $\vec{v}=\overrightarrow{n_{1}} \times \vec{n}_{2}$ is parallel to the line.

$$
\begin{aligned}
& \overrightarrow{n_{1}} \times \vec{n}_{2}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 1 & 1 \\
1 & 2 & -1
\end{array}\right|=(-1-2) \vec{\imath}-(-2-1) \vec{j}+(4-1) \vec{k} \\
& \text { Now a point on the line should be on both planes. Let's }
\end{aligned}
$$

Now a point on the line should be on both planes. Let's try taking $x=0$ to find the int. of the line with the $y z$-plane. We have $y+z=8$ and $2 y-z=1$ $\Rightarrow 3 y=9 \Rightarrow y=3 \Rightarrow z=5$. Then $(0,3,5)$ is a point on the line.
So parametric egs are $x=-3 t, y=3 t+3, z=3 t+5$.

