1. Elementary Vector Analysis

(from Stewart, Calculus, Chapters 12 and 13)

Vectors, Points, and Position Vectors: The position vector of a point P is the vector from the origin to P. For example, in \mathbb{R}^3 , a vector $\vec{v} = \langle x, y, z \rangle$ is the position vector of the point P = (x, y, z). In this way, we often identify points as vectors and vice versa.

Parametrized Curves

Parametrized Curves: Given a continuous vector function $\vec{r}(t) = \langle x(t), y(t) \rangle$ or $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, the set of points with position vector $\vec{r}(t)$ for some t defines a curve C. The components x(t), y(t), and z(t) are called parametric equations for the parametrized curve C. The variable t is called the parameter.

The tangent vector to a curve at the point $P = \vec{r}(t)$ is $\vec{r'}(t) = \langle x'(t), y'(t) \rangle$ or $\vec{r'}(t) = \langle x'(t), y'(t), z'(t) \rangle$. The line through the point $P = \vec{r}(t)$ parallel to the vector $\vec{r'}(t)$ is called the tangent line to C at P.

Ex. 1. (a) Sketch the curve C with parametric equations x(t) = t + 1, $y(t) = t^2 - 2t$, $-1 \le t \le 3$.

(b) Show that C is an arc of the parabola $y = x^2 - 4x + 3$ and use this fact to give another parametrization of C.

t	x	y
-1	0	3
0	1	0
1		
2		
3		

b) We have
$$x=t+1$$
 and $y=t^2-2t$
so $t=x-1$. Substituting into y ,
 $y=(x-1)^2-2(x-1)$
 $=x^2-2x+1-2x+2$

Another parametrization of C is
$$x=t$$
, $y=t^2-4t+3$, $0 \le t \le 4$.

Ex. 2. What curve is represented by the parametric equations?

(a)
$$x(t) = 2\cos(t), y(t) = 2\sin(t), 0 \le t \le 2\pi$$

(b)
$$x(t) = \sin(2t), y(t) = \cos(2t), 0 \le t \le 2\pi$$

circle of radius 2 contered at the origin, traversed once ounterclockvise.

chok wise

(c) Compute the tangent vector to the curve $\vec{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle$ and show that it is perpendicular to the curve at any point (x(t), y(t)).

The tangent vector is
$$7'(t) = \langle -2\sin(t), 2\cos(t) \rangle$$
. For any, t , $7'(t) \cdot 7'(t) = \langle 2\cos t, 2\sin t \rangle \cdot \langle -2\sin t, 2\cos t \rangle = -4\sin t \cot t + 4\sin t \cot t = 0$. So, $7'(t) \perp 7'(t)$ at any t .

Vector Equation: $\vec{r}(t) = \underline{\vec{r_0}} + t\underline{\vec{v}}$

Parametric Equations: $x(t) = \underline{x_0} + \underline{a}t$, $y(t) = \underline{y_0} + \underline{b}t$, $z(t) = \underline{z_0} + \underline{c}t$

 $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ are the position vectors of the points (x(t), y(t), z(t)) on the line $\vec{r_0} = \langle x_0, y_0, z_0 \rangle$ is the position vector of a fixed point $P_0 = (x_0, y_0, z_0)$ on the line $\vec{v} = \langle a, b, c \rangle$ is a <u>direction vector</u> of the line, i.e. \vec{v} is any vector parallel to the line

Rmk. For lines in \mathbb{R}^2 , just delete all of the third coordinates above.

F(t) = (xo, yo, 20)+t < a, b, c>

= <x0+at, 40+bt, 20+ct>

Ex. 4. Find parametric equations for the line $\underbrace{\text{segment}}_{\text{S+av+}}$ from (3,1,2) to (-5,4,1).

Ex. 5. Find parametric equations for the line that passes through the point (2,0,1) and is parallel to the line given by parametric equations x(t) = 3t, y(t) = -5, and z(t) = t + 4.

$$\begin{cases} (2,0,1) \\ 7 = \langle 3,0,1 \rangle \end{cases}$$

$$\chi = 2 + 3t, \quad y = 0, \quad z = 1 + t$$

Ex. 6. Find parametric equations for the tangent line to the parametrized curve x(t) = t + 1, $y(t) = t^2 - 2t$, at the point (0,3).

at the point
$$(0,3)$$
.

$$\vec{r}(t) = \langle t+1, t^2-2t \rangle$$

$$\vec{r}'(t) = \langle 1, 2t-2 \rangle \text{ is the tangent vector}$$

$$\vec{r}'(t) = \langle 1, 2t-2 \rangle \text{ is the tangent vector}$$

$$\vec{r}'(t) = \langle 1, 2t-2 \rangle \text{ is the tangent vector}$$

$$\vec{r}'(t) = \langle 1, 2t-2 \rangle \text{ is the tangent vector}$$

$$\vec{r}'(t) = \langle 1, 2t-2 \rangle \text{ is the tangent vector}$$

$$\vec{r}'(t) = \langle 1, 2t-2 \rangle \text{ is the tangent vector}$$

$$\vec{r}'(t) = \langle 1, 2t-2 \rangle \text{ is the tangent vector}$$

So
$$\vec{v} = \vec{r}'(-1) = \langle 1, -4 \rangle$$

And $\vec{r}_0 = \langle 0, 3 \rangle$ so the tangent line is parametrized by $\chi = t$, $\chi = 3 - 4t$.

$$\vec{n} \cdot (\vec{r} - \vec{r_0}) = \langle a_1 b_1 c \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle$$

$$= \alpha(x - x_0) + b(y - y_0) + c(z - z_0)$$

$$= 0 \quad bc, \quad n \perp \vec{r} - \vec{r_0}$$

Vector Equation:
$$\vec{n} \cdot (\vec{r} - \vec{r_0}) = 0$$

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$
 So $\vec{n} \perp \vec{r} - \vec{r}_0$

$$ax + by + cz = d$$

 $\vec{r} = \langle x, y, z \rangle$ are the position vectors of points (x, y, z) in the plane

 $\vec{r_0} = \langle x_0, y_0, z_0 \rangle$ is the position vector of a fixed point $P_0 = (x_0, y_0, z_0)$ in the plane

 $\vec{n} = \langle a, b, c \rangle$ is the <u>normal vector</u>, i.e. any vector orthogonal to the plane

Ex. 7. Find an equation of the plane that passes through the point (1,1,0) and is perpendicular to the line with parametric equations x(t) = 2 + 3t, y(t) = 1 - t, z(t) = 2 + 2t.

V is parallel to the line and hence also V = (3,-1,2) perpendicular to the plane.

So let
$$\vec{n} = \vec{v} = \langle 3, -1, 27 \rangle$$
.
and $\vec{v}_0 = \langle 1, 1, 6 \rangle$. Then

$$3(x-1) + -1(y-1) + 2(z) = 0$$
 is an eq. of
or $3x-y+2z=2$ the plane.

Ex. 8. Find an equation of the plane that passes through the points (1,0,2), (4,2,3), and (2,0,4).

The three points determine a triangle and hence a plane containing that triangle.

The vectors
$$\vec{\gamma} = \langle 4-1, 2-0, 3-2 \rangle = \langle 3, 2, 1 \rangle$$
 and $\vec{\gamma} = \langle 2-1, 0-0, 4-2 \rangle = \langle 1, 0, 2 \rangle$

are parallel to the plane and so $\vec{n} = \vec{1} \times \vec{u}$ is \perp to plane.

$$\vec{\nabla} \times \vec{N} = \begin{vmatrix} \vec{1} & \vec{1} & \vec{1} \\ \vec{2} & \vec{1} \end{vmatrix} = (2 \cdot 2 - 1 \cdot 0) \vec{1} - (3 \cdot 2 - 1 \cdot 1) \vec{1} + (3 \cdot 0 - 1 \cdot 2) \vec{1} \vec{1}$$

$$= (3 \cdot 2 - 1 \cdot 1) \vec{1} + (3 \cdot 0 - 1 \cdot 2) \vec{1} \vec{1} \vec{1} = (3 \cdot 0 - 1 \cdot 2) \vec{1} \vec{1} \vec{1} = (3 \cdot 0 - 1 \cdot 2) \vec{1} = (3 \cdot 0 - 1 \cdot 2) \vec{1} = (3 \cdot 0 - 1 \cdot$$

Then an eq. of the plane is
$$4(x-1)-5(y)-2(z-2)=0$$
.
or $4x-5y-2z=0$

Ex. 9. Find an equation of the plane that passes through the point (1,0,2) and contains the line x = 2t + 2, y = 2t, z = 4 - t.

$$\vec{7} \times \vec{n} = \begin{vmatrix} \vec{1} & \vec{3} & \vec{k} \\ 2 & 2 & 1 \\ 1 & 0 & 2 \end{vmatrix} = 4\vec{1} - (4+1)\vec{1} + 2\vec{k}$$

Then an eq. of the plants are eq. of th

The vector
$$\vec{V} = \langle 2,2,-1 \rangle$$
 is parallel to the plane.
Letting $t=0$, the point $(2,0,4)$ is on the line and here in the plane. Then the vector $\vec{V} = \langle 2,2,-1 \rangle$ $\vec{V} = \langle 2-1,6-0,4-2 \rangle = \langle 1,0,2 \rangle$ is also parallel to the plane. So, $\vec{T} = \vec{T} \times \vec{W}$ is \vec{L} to the plane.

$$\vec{V} = \langle 2,2,-1 \rangle = \langle 1,0,2 \rangle =$$

Ex. 10. Find parametric equations for the line of intersection for the two planes
$$2x + y + z = 8$$
 and $x + 2y - z = 1$.

Ti = <2,1,1) is I to plane I and hence also the the line of intersection, since it is contained in plane 1. Similarly, no = <1,2,-17 is also perpendicular to the line. Hence, $\vec{V} = \vec{n}_1 \times \vec{n}_2$ is pralled to the line.

or 4x-5y-2z=0

$$\vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{t} & \vec{j} & \vec{k} \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = (-1-2)\vec{b} - (-2-1)\vec{j} + (4-1)\vec{k}$$

Now a point on the line should be on both planes. Let's try taking X=0 to find the int. of the line with the yz-plane. We have y+z=8 and 2y-z=1 \Rightarrow 3y = 9 = 7y=3 => 7=5. Then (0,3,5) is a point on the line. So parametric egs are x = -3t, y = 3t + 3, z = 3t + 5.