1. Vector Spaces and Subspaces

(References: Comps Study Guide for Linear Algebra Section 1; Damiano & Little, A Course in Linear Algebra, Chapter 1)

Vector Spaces

(1.1.1) Definition. A (real) vector space is a set V (whose elements are called vectors by analogy with the first example we considered) together with

a) an operation called *vector addition*, which for each pair of vectors \mathbf{x} , \mathbf{y} $\in V$ produces another vector in V denoted $\mathbf{x} + \mathbf{y}$, and

b) an operation called *multiplication by a scalar* (a real number), which for each vector $\mathbf{x} \in V$, and each scalar $c \in \mathbf{R}$ produces another vector in V denoted cx.

- Properties 1. For all vectors x, y, and $z \in V$, (x + y) + z = x + (y + z). 2. For all vectors x and $y \in V$, x + y = y + x. 3. There exists a vector $0 \in V$ with the property that x + 0 = x for all $\int additive identity$ vectors $x \in V$. 4. For each vector $x \in V$, there exists a vector denoted -x with the property $\int existence of$ that x + -x = 0. 5. For all vectors x and $y \in V$ and all scalars $c \in \mathbf{R}$, c(x + y) = cx + cy. 6. For all vectors $x \in V$, and all scalars c and $d \in \mathbf{R}$, (c + d)x = cx + dx. 7. For all vectors $x \in V$.

 - 7. For all vectors $\mathbf{x} \in V$, and all scalars c and $d \in \mathbf{R}$, $(cd)\mathbf{x} = c(d\mathbf{x})$.
 - 8. For all vectors $\mathbf{x} \in V$, $1\mathbf{x} = \mathbf{x}$.

(1.1.6) Proposition. Let V be a vector space. Then

- a) The zero vector $\mathbf{0}$ is unique. b) For all $\mathbf{x} \in V$, $\mathbf{0}\mathbf{x} = \mathbf{0}$, vector (the zero vector in V)
- c) For each $x \in V$, the additive inverse -x is unique
- d) For all $\mathbf{x} \in V$, and all $c \in \mathbf{R}$, $(-c)\mathbf{x} = -(c\mathbf{x})$.

Basic Examples of Vector Spaces. For each example, identify:

- (a) an expression for a general vector in the vector space
- (b) the definitions of the addition and scalar multiplication in the vector space
- (c) the zero vector (or the additive identity) in the vector space
- (d) the additive inverse of a general vector in the vector space

1.
$$\mathbb{R}^{n} = \left\{ \left(\chi_{1,j} \dots \chi_{n} \right) \mid \chi_{i} \in \mathbb{R} \right\}$$

2. $P_{n}(\mathbb{R}) = \left\{ Q_{0} + A_{1}\chi + \dots + A_{n}\chi^{n} \mid A_{i} \in \mathbb{R} \right\}$
3. $M_{m \times n}(\mathbb{R}) = \left\{ \left(\begin{array}{c} A_{11} & A_{12} \dots & A_{1n} \\ A_{21} & \ddots & A_{mn} \end{array} \right) \mid A_{ij} \in \mathbb{R} \right\}$
 $= \left\{ \left(\begin{array}{c} A_{11} & A_{12} \dots & A_{mn} \\ A_{m1} & \ddots & A_{mn} \end{array} \right) \mid A_{ij} \in \mathbb{R} \right\}$

Subspaces: Suppose V is a vector space. Explain what it means to say that a subset U of V is a subspace.

Subspace Theorem: Write down the theorem that you use to prove that a subset W of a vector space V is a subspace.

Ex. 1. (a) Let $V = \mathbb{R}^2$ and $W = \{(x, y) \in \mathbb{R}^2 \mid 6x + 5y = 3\}$. Determine whether or not W is a subspace of V and justify your answer.

The zero vector in V is
$$\vec{0} = (0,0)$$
, but $6(0) + 5(0) = 0 \neq 3$ so
 $\vec{0} \in W$. Hence, W is not a subspace of V.

(b) Give two more examples of subsets of \mathbb{R}^2 : one that is a subspace and one that is not a subspace. Justify your answers.

1. The set
$$W_1 = \sum_{i=1}^{n} (x_i, y_i) \in |\mathbb{R}^2 | bx + 5y = |\sum_{i=1}^{n} is not a subspace of $|\mathbb{R}^2$
because it does not contain the zero vector $\overline{J} = (0, 0)$.
2. The set $W_2 = \sum_{i=1}^{n} (x_i, y_i) \in |\mathbb{R}^2 | bx + 5y = 0 \sum_{i=1}^{n} is a subspace of $|\mathbb{R}^2$. To see this,
first note that $\overline{O} = (0, 0) \in W_2$. Next, suppose that cells and
first note that $\overline{O} = (0, 0) \in W_2$. Next, suppose that cells and
 $(x_{i_1}, y_{i_1}), (x_{2_1}, y_{2_1}) \in W_2$. Then $bx_i + 5b_i = 0$ and $bx_2 + 5b_2 = 0$, which
 $(x_{i_1}, y_{i_1}), (x_{2_1}, y_{2_1}) \in W_2$. Then $bx_i + 5b_i = 0$ and $bx_2 + 5b_2 = 0$, which
implies that $b(cx_1 + x_2) + 5(cy_1 + y_2) = c(bx_1 + 5b_1) + (bx_2 + 5b_2) = 0$.
Thus, $(cx_1 + x_2, cy_1 + y_2) = c(x_{i_1}, y_{i_1}) + (x_{2_1}, y_{2_1}) \in W_2$ and W_2 is
a subspace of $|\mathbb{R}^2$.$$$

Ex. 2. $V = P_2(\mathbb{R})$ be the vector space of polynomials of degree two or less. Determine whether or not each of the following sets W is a subspace of V. Justify your answers.

(a)
$$W = \{p \in P_2(\mathbb{R}) \mid p(0) + p'(0) = 0\}$$

(b) $W = \{p \in P_2(\mathbb{R}) \mid p'(0) = 2\}$
a) Let $z(x) = 0$ $\forall x$ be the zero vector in $P_2(IR)$. Then $z(0) + z^1(0) = 0$ and $q_r(0) + q^1(0) = 0$.
So $z \in W$. Now let $C \in IR$ and $p_1 q \in W$. So $p(0) + p^1(0) = 0$ and $q_r(0) + q^1(0) = 0$.
Then $(Cp+q_r)(0) + (Cp+q_r)^1(0) = Cp(0) + q_r(0) + Cp^1(0) + q^1(0)$
 $= C(p(0) + p^1(0)) + (p(0) + q^1(0)) = 0 + 0 = 0$.
So $Cp+q \in W$. Thus, W is a subspace of V .
b) Let $z(x) = 0$ $\forall x$ be the zero vector in $P_2(IR)$. Then $z^1(0) = 0 \neq 2$ so
 $z \notin W$. Thus, W is not a subspace of V .

Ex. 3. Let U and V be subspaces of a vector space W. Prove that $2U + 5V = \{2\vec{u} + 5\vec{v} : \vec{u} \in U, \vec{v} \in V\}$

is a subspace of W.

Since W and V are subspaces of W,
$$\vec{\sigma} \in U$$
 and $\vec{\sigma} \in V$. Then
 $2 \cdot \vec{\sigma} + 5 \cdot \vec{\sigma} = \vec{\sigma} \in 2U + SV$. Let $c \in |R|$ and $2\vec{u}_1 + 5\vec{v}_1 + 2\vec{u}_2 + 5\vec{v}_2$
be in $2U + 5V$ for $\vec{u}_{11}\vec{u}_2 \in U$ and $\vec{v}_{11}\vec{v}_2 \in V$. Then
 $c(2\vec{u}_1 + 5\vec{v}_1) + (2\vec{u}_2 + 5\vec{v}_2) = 2(c\vec{u}_1 + \vec{u}_2) + 5(c\vec{v}_1 + \vec{v}_2)$. Now since
 $\vec{u}_{11}\vec{u}_2 \in U$ and U is a subspace, $c\vec{u}_1 + \vec{u}_2 \in U$ as well. Similarly, since
 $\vec{u}_{11}\vec{u}_2 \in U$ and U is a subspace, $c\vec{v}_1 + \vec{v}_2 \in V$. Then $2(c\vec{u}_1 + \vec{u}_2) + 5(c\vec{v}_1 + \vec{v}_2) \in 2U + 5V$
V is a subspace, $c\vec{v}_1 + \vec{v}_2 \in V$. Then $2(c\vec{u}_1 + \vec{u}_2) + 5(c\vec{v}_1 + \vec{v}_2) \in 2U + 5V$
is and hence $c(2\vec{u}_1 + 5\vec{v}_1) + (2\vec{u}_2 + 5\vec{v}_2) \in 2U + 5V$. Thus, $2u + 5V$ is
a subspace of W.

<u>Linear Combinations</u>: Let V be a vector space and $S = \{v_1, \ldots, v_n\}$ be a subset of V. Write down a general linear combination of the elements of S.

$$a_1v_1 + \dots + a_nv_n$$
, $a_i \in \mathbb{R}$

Span
$$(S) = \mathcal{E} \alpha_1 v_1 + \dots + \alpha_n v_n \mid \alpha_1, \dots, \alpha_n \in \mathbb{R}^{2}$$
 let $X \in A$ and show that $X \in B$

Ex. 4. Let W be a subspace of a vector space V and let S be a subset of W. Prove that $\text{Span}(S) \subseteq W$. (Note: Here you are being asked to prove a common theorem, which you could usually use without proof.)

Let
$$X \in Span(S)$$
, Then $X = \alpha_1 V_1 + ... + \alpha_n V_n$ for some $\alpha_{1,...}$, $\alpha_n \in \mathbb{R}$
and $V_{1,...}$, $V_n \notin S$. Since $S \subseteq W$, $V_{1,1}$, $V_n \notin W$ and since W
is a subspace, $\alpha_1 V_1 + ... + \alpha_n V_2 \notin W$ as well, Thus, $X \notin W$.
Therefore, Span(S) $\subseteq W$.

Ex. 5. Let
$$V = P_2(\mathbb{R})$$
 be the vector space of polynomials with real coefficients of degree at most two and
let $S = \{1, 1 + x, 1 + x + x^2\}$. Prove that $Span(S) = V$. To show $A = B$, show $A = B$ and $B \subseteq A$.
 \subseteq Since V is a vector $Space$ and $S \subseteq V$, we know that $Span(S) \subseteq V$.
 \supseteq Suppore that $p \in V = P_2(\mathbb{R})$. So $p(x) = a_0 + a_1 X + a_2 X^2$ for some $a_{0,a_1,a_2} \in \mathbb{R}$.
Scretchwork we want to show that $p \in Span(S)$, i.e. $p(X) = c_1(1) + (c_2(1+X) + c_3(1+X+X^2))$
for some $c_{11}(c_{21}(3 \in \mathbb{R}), To find the C_{11}$ we set $a_P = a_{23} Stan of equations$.
 $a_0 + a_1 X + a_2 X^2 = C_1 + c_2(1+X) + c_3(1+X+X^2)$
 $a_0 + a_1 X + a_2 X^2 = C_1 + c_2(1+X) + c_3(1+X+X^2)$
 $= (c_1 + (c_2 + c_3) + ((c_2 + c_3)X + c_3X^2)$
 $= (c_1 + (c_2 + c_3) + (c_2 + c_3) - a_2 = a_0 - a_1$
 $c_3 = a_2$
Then $(a_0 - a_1)(1) + (a_1 - a_2)(1+X) + a_2(1+X+X^2) = a_0 + a_1 X + a_2 X^2 = p(X)$.
So, $p \in Span(S)$ and $Y \subseteq Span(S)$. Thus, $Span(S) = V$.

Linear Independence and Dependence: Let $S = \{v_1, \dots, v_n\}$ be a set of vectors in a vector space V. The set S is linearly dependent if there exist $a_1, \dots, a_n \in \mathbb{R}$ not all zero such that $a_1 \vee_1 + \dots + a_n \vee_n = 0$. The set S is linearly independent if for any $a_1, \dots, a_n \in \mathbb{R}$ satisfying $a_1 \vee_1 + \dots + a_n \vee_n = 0$, we have $a_1 = \dots = a_n = 0$. Ex. 6. Is the following set of polynomials linearly independent? Explain your answer. $\{x^4, x^4 + x^3, x^4 + x^3 + x^2\}$

Let
$$a_1 x^{4} + a_2 (x^{4} + x^{3}) + a_3 (x^{4} + x^{3} + x^{2}) = 0$$
 for some $a_{11}a_{21}a_{3} \in \mathbb{R}$. Then
 $(a_1 + a_2 + a_3)x^{4} + (a_2 + a_3)x^{3} + a_3x^{2} = 0$ which implies that $a_1 + a_2 + a_3 = 0$
 $(a_1 + a_2 + a_3)x^{4} + (a_2 + a_3)x^{3} + a_3x^{2} = 0$ which implies that $a_1 + a_2 + a_3 = 0$
 $a_3 = 0$.

Substituting
$$a_3 = 0$$
 gives $a_2 = 0$ and $a_1 = 0$. Thus, $a_1 = a_2 = a_3 = 0$.
Therefore, $\{\chi^4, \chi^4 + \chi^3, \chi^4 + \chi^3 + \chi^2 \}$ is linearly independent.

Ex. 7. Let W_1 and W_2 be subspaces of a vector space V and assume that $W_1 \cap W_2 = \{\vec{0}\}$. Let $w_1 \in W_1$ and $w_2 \in W_2$ be such that $w_1 \neq \vec{0}$ and $w_2 \neq \vec{0}$. Prove that $\{w_1, w_2\}$ is linearly independent.

Let
$$a_{1,a_{2}} \in |\mathbb{R}$$
 be such that $a_{1}w_{1} + a_{2}w_{2} = \vec{0}$. Then $a_{1}w_{1} = -a_{2}w_{2}$.
Now $w_{1} \in W_{1}$ and since W_{1} is a subspace, $a_{1}w_{1} \in W_{1}$ as well.
Similarly, $-a_{2}w_{2} \in W_{2}$. Hence, $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ and
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (W_{2} . Since $W_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (W_{2} . Since $W_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (M_{2} . Since $W_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (M_{2} . Since $W_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (M_{2} . Since $W_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (M_{2} . Since $W_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (M_{2} . Since $W_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $a_{1}w_{1} = -a_{2}w_{2} \in W_{2}$, i.e. $a_{1}w_{1} = -a_{2}w_{2} \in W_{1}$ (M_{2} . Since $w_{1} \cap W_{2} = \vec{E}\vec{O}\vec{S}$,
 $w_{1}w_{2} \in \vec{E}\vec{O}\vec{S}$, $w_{1}w_{2} \in \vec{E}\vec{O}\vec{S}$, $w_{1}w_{2} = \vec{E}\vec{O}\vec{S}$, $w_{2}w_{3} = \vec{E}\vec$

Ex. 8. Suppose that u and v are vectors in a vector space V. Prove that $\{u, v\}$ is linearly independent if and only if $\{u + v, u - v\}$ is linearly independent.

⇒ First suppose that
$$\xi_{u,v}S_{v}$$
 is linearly independent.
Note: ve want to show that $\xi_{u,v}V_{u-v}J_{v}$ is lin ind, which means that we need
to show for any $a_{1,1}a_{2} \in ||R|$ satisfy $a_{1,1}(u+v) + a_{2,1}(u-v) = \vec{0}$, then
Let $a_{1,1}a_{2} \in ||R|$ such that $a_{1,1}(u+v) + a_{2,1}(u-v) = \vec{0}$. Then
Let $a_{1,1}a_{2,1}\vec{v} + (a_{1}-a_{2})\vec{v} = \vec{0}$ and since $\xi_{u,v}V_{i}$ is linearly independent;
($a_{1,1}a_{2,1}\vec{v} + (a_{1}-a_{2,1})\vec{v} = \vec{0}$ and $a_{1}-a_{2}=0$. Solving this system by adding
we have $a_{1,1}a_{2,2}=0$ and $a_{1}-a_{2}=0$. Solving this system by adding
the left and right hand sides gives $2a_{1}=0$, there, $a_{1}=0$ and
substituting gives $a_{2}=0$ as nell. Thus, $a_{1}=a_{2}=0$ and so $\xi_{u+v,1}u-vJ_{i}$
must be linearly independent.
The linearly independent is linearly independent. To show that $\xi_{u,v}$
Next suppose that $\xi_{u+v,1}u-vJ_{i}$ is linearly independent. To show that $\xi_{u,v}=0$.
Is also linearly independent, let $a_{1,1}a_{2}\in ||R|$ be such that $a_{1,u}+a_{2,v}=0$.
Scratchnovia: we want to transform this to an equation of the form
 $C_{1}(u+v) + C_{2}(u-v) = 0$ so we can use the linear independence
of $\xi_{u+v,1}u-vJ_{i}$. To do this, we set
 $a_{1,u}+a_{2,v}=c_{1}(u+v) + C_{2}(u-v) = (c_{1}+c_{2})u + (c_{1}-c_{2})v$
 $=) c_{1}+c_{2}=a_{1} = c_{1}=\frac{1}{2}(a_{1}+a_{2})$
 $c_{1}-c_{2}=a_{2} = c_{2}=\frac{1}{2}(a_{1}-a_{2})$
Then $\frac{1}{2}(a_{1}+a_{2})(u+v) + \frac{1}{2}(a_{1}-a_{2})(u-v) = a_{1,u} + a_{2,v} = 0$. Since $\xi_{u+v,1}u-vJ_{i}$
is linearly independent, we must have $\frac{1}{2}(a_{1}+a_{2})=0$ and $\frac{1}{2}(a_{1}-a_{2})=0$.
Substituting independent, we must have $\frac{1}{2}(a_{1}+a_{2})=0$ and $\frac{1}{2}(a_{1}-a_{2})=0$.
Subtractions alone implies
but then $a_{1}+a_{2}=0$ and $a_{1}-a_{2}=0$ which we have shown above implies
that $a_{1}=a_{2}=0$. So, $\xi_{u,v}J_{i}$ is linearly independent as well.

3

<u>Basis</u>: A subset S of a vector space V is a basis of V if

(1) S is Linearly independent and (2) Span(S) = V.

<u>Dimension</u>: The dimension of a vector space V is the number of elements in a basis for V. (It is a theorem that any two bases of V have the same number of elements.) If V has no finite basis, we say $\dim(V) = \infty$.

Ex. 9. Let $P_3(\mathbb{R})$ be the vector space of polynomials with real coefficients and degree at most three. Let $W = \{p \in P_3(\mathbb{R}) \mid p(0) = p''(0) \text{ and } p'(1) = 0\}.$ (a) Prove that W is a subspace of $P_3(\mathbb{R})$.

Let
$$z \in P_3(IR)$$
 be the constant polynomial, $z(x) = 0$ for all x . Then $z(0) = z(0) = 0$
and $z^{1}(1) = 0$. Hence, $z \in W$. Next let $c \in IR$ and $P_1 = 0$. Then
 $p(0) = p^{11}(0)$, $p^{1}(1) = 0$, $q(0) = q^{11}(0)$, and $q^{1}(1) = 0$. Then
 $(cp+q)(0) = cp(0)+q(0) = cp^{11}(0) + q^{11}(0) = (cp^{11} + q^{11})(0)$ and
 $(cp+q)^{1}(1) = cp^{1}(1) + q^{1}(1) = c \cdot 0 + 0 = 0$. So $cp+q \in W$ as well.
Thus, W is a subspace of $P_3(IR)$.

(b) Find a basis for W.
Let
$$p(X) = q_0 + a_1 X + q_2 X^2 + a_3 X^3 \in W$$
 for $a_{0_1}a_{1_1}, q_{2_1}a_3 \in IR$. Then
 $p^1(X) = q_1 + 2a_2 X + 3a_3 X^2$ and $p^{11}(X) = 2a_2 + 6a_3 X$. So $p(0) = a_0$
and $q^{11}(0) = 2a_2$. Then the condition $p(0) = p^{11}(0)$ implies that $a_0 = 2a_2$.
And from $p^1(1) = 0$ we have $a_1 + 2a_2 + 3a_3 = 0$. Hence, we have $a_0 = 2a_2$.
And from $p^1(1) = 0$ we have $a_1 + 2a_2 + 3a_3 = 0$. Hence, we have $a_0 = 2a_2$.
And from $p^1(1) = 0$ we have $a_1 + 2a_2 + 3a_3 = 0$. Hence, we have $a_0 = 2a_2$.
And from $p^1(1) = 0$ we have $a_1 + 2a_2 + 3a_3 = 0$. Hence, we have $a_0 = 2a_2$.
And $a_1 = -2a_2 - 3a_3$ with a_2 and a_3 free. Substituting, $p(X)$ must be
and $a_1 = -2a_2 - 3a_3$ with a_2 and a_3 free. Substituting, $p(X)$ must be
of the form $p(X) = 2a_2 + (-2a_2 - 3a_3)X + a_2X^2 + a_3X^3$ for some $a_{2_1}a_3 \in IR$.
of the form $p(X) = 2a_2 + (-2a_2 - 3a_3)X + a_2X^2 + a_3(-3X + X^3)$, then a basis
Rearranging we have $p(X) = a_2(2 - 2X + X^2) + a_3(-3X + X^3)$.

(c) What is the dimension of W?

By part b,
$$dim(W) = 2$$
.

Ex. 10.

(a) Give a basis for the subspace of \mathbb{R}^4 spanned by the vectors

Let
$$\mathbf{V}_{1} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -4 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}.$$

(b) Give an example of a vector in \mathbb{R}^4 that is not in the subspace in part (a). Justify your answer.

a) By inspection,
$$V_2 = -2V_1$$
 so $V_2 \in Span \{V_1, V_3, V_4\}$ and can be immediately
eliminated. For the remaining three vectors, we row-reduce the matrix
 $\begin{bmatrix} V_1 & V_3 & V_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix} \xrightarrow{R_1 + R_2 + R_4} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_2 + R_4 - R_4} \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_2 + R_4 - R_4} \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_2 + R_4 - R_4} \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$

The row-reduced matrix has pivots in the first and second columns and So the columns of the original matrix err spanned by V_1 and V_3 . Thus, the subspace is Span $(\{V_1, V_3\})$ that clearly V_1 and V_3 are not scalar multiples of each other since the first entry in v_1 is 1 and the first entry in V_3 is 0. Hence $\{V_1, V_3\}$ is linearly independent. Thus, a basis of this subspace is $\{\binom{1}{2}, \binom{2}{-1}, \binom{2}{-1}\}$.

Note: other possible answers are
$$\mathcal{E}V_{1,1}V_{2}S$$
 and $\mathcal{E}V_{2,1}V_{3}S$.
b) The vector $\begin{pmatrix} 0\\ 2\\ 1 \end{pmatrix}$ is not in this subspace. To see this, suppose that
 $\begin{pmatrix} 0\\ 2\\ 1 \end{pmatrix} = C_{1}\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix} + C_{2}\begin{pmatrix} 0\\ 1\\ 2\\ -1 \end{pmatrix}$ for some $C_{1,1}C_{2}\in \mathbb{R}$. Then we have the system
 $\begin{pmatrix} 0\\ 2\\ -1 \end{pmatrix} = C_{1}\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$ for some $C_{1,1}C_{2}\in \mathbb{R}$. Then we have the system
of equations $C_{1}=0$ which is inconsistent since $C_{1}=C_{2}=0$ implies that
 $C_{2}=0$ $-C_{1}=C_{2}=\delta$, not 1. Hence, $\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix} \notin Span(\mathcal{E}V_{1,1}V_{3}S)$
 $2C_{1}+2C_{2}=0$
 $-C_{1}=C_{2}=\delta$.

Additional Problems

Ex. 11. Determine whether or not each of the following sets W is a subspace of the vector space V. Justify your answers.

- (a) $V = P(\mathbb{R})$ be the vector space of all polynomials and $W = \{p \in P(\mathbb{R}) \mid p(2) = 0\}$. Yes
- (b) $V = P(\mathbb{R})$ be the vector space of all polynomials and $W = \{p \in P(\mathbb{R}) \mid p(2) = 1\}$. No, $O \notin W$
- (c) $V = \mathbb{R}^3$ and $W = \{(x, y, z) \in \mathbb{R}^3 \mid x^4 y^2 = 0\}$. No, $((1, 1, 0) \in \mathbb{W} \mid y^4 (2, 2, 0) \notin \mathbb{W}$
- (d) $V = M_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 matrices with real coefficients and

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) \mid 3a - 2d = 0 \right\}. \quad \forall e \mathsf{S}$$

Ex. 12. Let W_1 and W_2 be subspaces of a vector space V.

- (a) Prove that $W_1 \cap W_2$ is a subspace of V.
- (b) Give an example to show that $W_1 \bigcup W_2$ need not be a subspace of V.
- (c) Is $W_1 \setminus W_2$ a subpace of V? No $\overline{O} \notin W_1 \setminus W_2$

Ex. 13. Let S be a subset of a vector space V. Prove that Span(S) is a subspace of V. (Note: This is another common theorem that you could usually use without proof.) see Thim 1.3.4 in text

Ex. 14. Suppose that V is a vector space and u and v are vectors in V. Show that $Span(\{u, v\}) =$ $Span(\{u+v, u-v\})$. Use the scratchwork from Ex, 8

Ex. 15. Suppose that u, v, and w are vectors in a vector space V and that $\{u, v, w\}$ is linearly independent. Prove that $\{u + 2v, v + 2w, u + 2w\}$ is linearly independent. Similar to Ex. 8

Ex. 16. Let V be a vector space. Suppose that $\{u, v, w\}$ is a basis of V. Is the set $\{u + 2v, v + 2w, u + 2w\}$ also a basis of V? Justify your answer. Yes, v.e. Ex. 15 moved

- **Ex.** 16. Let $W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\}$.
- (a) Prove that W is a subspace of \mathbb{R}^3 . Similar to $\notin X_1$ (b) Find a basis of W. X = -2y-32 with y, t free $\Rightarrow (-2y-3t, y-2) = j(-2, 1, 0) + i f(-3, 0, 1)$ $\Rightarrow \beta_{\alpha} i_j = i f(-3, 0, 1) = j(-2, 1, 0) + i f(-3, 0, 1)$

Ex. 17. Let U and V be subspaces of a vector space W.

- (a) Prove that $U + V = \{u + v : u \in U, v \in V\}$ is a subspace of W. Similar to $\mathsf{E} \times \mathsf{3}$
- (b) Suppose $\{u_1, \ldots, u_m\}$ is a basis for U and $\{v_1, \ldots, v_n\}$ is a basis for V. Prove that $\{u_1, \ldots, u_m, v_1, \ldots, v_n\} \neq S$ spans U+V. For utue U+V, u= cinit...+cmum and y= aivit... tanva for some cijai PIR.
- (c) Prove that $\dim(U+V) \leq \dim(U) + \dim(V)$. You can reduce S to a basis of UTV.
- (d) Give an example of a vector space W with subspaces U and V where $\dim(U+V) < \dim(U) + \dim(V)$. W=122, U= Span 2(1)3=V

see study guide