1. Vector Spaces and Subspaces

(References: Comps Study Guide for Linear Algebra Section 1; Damiano & Little, A Course in Linear Algebra, Chapter 1)

Vector Spaces

- (1.1.1) **Definition**. A (real) vector space is a set V (whose elements are called vectors by analogy with the first example we considered) together with
- a) an operation called *vector addition*, which for each pair of vectors \mathbf{x} , $\mathbf{y} \in V$ produces another vector in V denoted $\mathbf{x} + \mathbf{y}$, and
- **b)** an operation called *multiplication by a scalar* (a real number), which for each vector $\mathbf{x} \in V$, and each scalar $c \in \mathbf{R}$ produces another vector in V denoted $c\mathbf{x}$.

Furthermore, the two operations must satisfy the following axioms:

- 1. For all vectors x, y, and $z \in V$, (x + y) + z = x + (y + z).
- 2. For all vectors \mathbf{x} and $\mathbf{y} \in V$, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- 3. There exists a vector $0 \in V$ with the property that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all vectors $\mathbf{x} \in V$.
- **4.** For each vector $\mathbf{x} \in V$, there exists a vector denoted \mathbf{x} with the property that $\mathbf{x} + -\mathbf{x} = \mathbf{0}$.
- 5. For all vectors \mathbf{x} and $\mathbf{y} \in V$ and all scalars $c \in \mathbf{R}$, $c(\mathbf{x} + \mathbf{y}) = c\mathbf{x} + c\mathbf{y}$.
- **6.** For all vectors $\mathbf{x} \in V$, and all scalars c and $d \in \mathbf{R}$, $(c + d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$.
- 7. For all vectors $\mathbf{x} \in V$, and all scalars c and $d \in \mathbf{R}$, $(cd)\mathbf{x} = c(d\mathbf{x})$.
- 8. For all vectors $x \in V$, 1x = x.
- (1.1.6) Proposition. Let V be a vector space. Then
 - a) The zero vector 0 is unique.
 - **b)** For all $x \in V$, 0x = 0.
 - c) For each $x \in V$, the additive inverse -x is unique.
 - d) For all $x \in V$, and all $c \in \mathbb{R}$, (-c)x = -(cx).

Basic Examples of Vector Spaces. For each example, identify:

- (a) an expression for a general vector in the vector space
- (b) the definitions of the addition and scalar multiplication in the vector space
- (c) the zero vector (or the additive identity) in the vector space
- (d) the additive inverse of a general vector in the vector space
- 1. \mathbb{R}^n
- 2. $P_n(\mathbb{R})$
- 3. $M_{m\times n}(\mathbb{R})$

Ex. 2. $V = P_2(\mathbb{R})$ be the vector space of polynomials of degree two or less. Determine whether or not each of the following sets W is a subspace of V. Justify your answers.

- (a) $W = \{ p \in P_2(\mathbb{R}) \mid p(0) + p'(0) = 0 \}$ (b) $W = \{ p \in P_2(\mathbb{R}) \mid p'(0) = 2 \}$

 $\mathbf{Ex.}$ 3. Let U and V be subspaces of a vector space W. Prove that

$$2U + 5V = \{2\vec{u} + 5\vec{v} : \vec{u} \in U, \vec{v} \in V\}$$

is a subspace of W.

<u>Linear Combinations</u>: Let V be a vector space and $S = \{v_1, \ldots, v_n\}$ be a subset of V. Write down a general linear combination of the elements of S.

Span: The span of a nonempty set S is the set of all linear combination of elements of S. Write down the definition of Span(S) in set-builder notation. (Note: Span(\emptyset) is defined to be $\{\vec{0}\}$.)

Ex. 4. Let W be a subspace of a vector space V and let S be a subset of W. Prove that $\mathrm{Span}(S) \subseteq W$. (Note: Here you are being asked to prove a common theorem, which you could usually use without proof.)

Ex. 5. Let $V = P_2(\mathbb{R})$ be the vector space of polynomials with real coefficients of degree at most two and let $S = \{1, 1+x, 1+x+x^2\}$. Prove that $\operatorname{Span}(S) = V$.

Linear Independence and Dependence: Let $S = \{v_1, \dots, v_n\}$ be a set of vectors in a vector space V. The set S is *linearly dependent* if

The set S is linearly independent if

Ex. 6. Is the following set of polynomials linearly independent? Explain your answer.

$$\{x^4, x^4 + x^3, x^4 + x^3 + x^2\}$$

Ex. 7. Let W_1 and W_2 be subspaces of a vector space V and assume that $W_1 \cap W_2 = \{\vec{0}\}$. Let $w_1 \in W_1$ and $w_2 \in W_2$ be such that $w_1 \neq \vec{0}$ and $w_2 \neq \vec{0}$. Prove that $\{w_1, w_2\}$ is linearly independent.

Ex. 8. Suppose that u and v are vectors in a vector space V. Prove that $\{u,v\}$ is linearly independent if and only if $\{u+v,u-v\}$ is linearly independent.

<u>Dimension</u> : The dimension of a vector space V is the number of elements in a basis for V . (It is a theorem that any two bases of V have the same number of elements.) If V has no finite basis, we say $\dim(V) = \infty$.
Ex. 9. Let $P_3(\mathbb{R})$ be the vector space of polynomials with real coefficients and degree at most three. Let $W = \{ p \in P_3(\mathbb{R}) \mid p(0) = p''(0) \text{ and } p'(1) = 0 \}.$ (a) Prove that W is a subspace of $P_3(\mathbb{R})$.
(b) Find a basis for W
(b) Find a basis for W .
(c) What is the dimension of W ?

Basis: A subset S of a vector space V is a basis of V if

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Ex. 10.

(a) Give a basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -4 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}.$$

(b) Give an example of a vector in \mathbb{R}^4 that is not in the subspace in part (a). Justify your answer.

Additional Problems

Ex. 11. Determine whether or not each of the following sets W is a subspace of the vector space V. Justify your answers.

- (a) $V = P(\mathbb{R})$ be the vector space of all polynomials and $W = \{p \in P(\mathbb{R}) \mid p(2) = 0\}$.
- (b) $V = P(\mathbb{R})$ be the vector space of all polynomials and $W = \{p \in P(\mathbb{R}) \mid p(2) = 1\}$.
- (c) $V = \mathbb{R}^3$ and $W = \{(x, y, z) \in \mathbb{R}^3 \mid x^4 y^2 = 0\}.$
- (d) $V = M_{2\times 2}(\mathbb{R})$ be the vector space of 2×2 matrices with real coefficients and

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) \mid 3a - 2d = 0 \right\}.$$

Ex. 12. Let W_1 and W_2 be subspaces of a vector space V.

- (a) Prove that $W_1 \cap W_2$ is a subspace of V.
- (b) Give an example to show that $W_1 \bigcup W_2$ need not be a subspace of V.
- (c) Is $W_1 \setminus W_2$ a subpace of V?

Ex. 13. Let S be a subset of a vector space V. Prove that Span(S) is a subspace of V. (Note: This is another common theorem that you could usually use without proof.)

Ex. 14. Suppose that V is a vector space and u and v are vectors in V. Show that $Span(\{u,v\}) = Span(\{u+v,u-v\})$.

Ex. 15. Suppose that u, v, and w are vectors in a vector space V and that $\{u, v, w\}$ is linearly independent. Prove that $\{u + 2v, v + 2w, u + 2w\}$ is linearly independent.

Ex. 16. Let $W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\}.$

- (a) Prove that W is a subspace of \mathbb{R}^3 .
- (b) Find a basis of W.

Ex. 17. Let U and V be subspaces of a vector space W.

- (a) Prove that $U + V = \{u + v : u \in U, v \in V\}$ is a subspace of W.
- (b) Suppose $\{u_1, \ldots u_m\}$ is a basis for U and $\{v_1, \ldots v_n\}$ is a basis for V. Prove that $\{u_1, \ldots, u_m, v_1, \ldots v_n\}$ spans U + V.
- (c) Prove that $\dim(U+V) \leq \dim(U) + \dim(V)$.
- (d) Give an example of a vector space W with subspaces U and V where $\dim(U+V) < \dim(U) + \dim(V)$.