1. Addendum: More on Basis and Dimension
(This material appears in Section 2 of the Study Guide, but in Chapter 1 of the text.)
Theorems about dimension from Chapter 1

- If $X \subseteq V$ is a subspace, then $\operatorname{dim}(X) \leq \operatorname{dim}(V)$. Moreover, if $\operatorname{dim}(V)<\infty$, then $\operatorname{dim}(X)=\operatorname{dim}(V)$ if and only if $X=V$.
- Let V be a vector space with $\operatorname{dim}(V)=n$, and let $S \subseteq V$ be a set of m distinct vectors in V.
- If $m<n$, then S cannot span V.
- If $m>n$, then S cannot be linearly independent.

Challenge: Explain how the following "two-out-of-three theorem" follows from the results above.
Two-out-of-three Theorem for Sets: Let V be a vector space, and let $S \subseteq V$ be a set of n distinct vectors in V. If any two of the following conditions hold, then all three hold (and S is a basis for V).
(1) S is linearly independent.
(2) S spans V.

$$
1\} 2 \Rightarrow S \text { is a basis of } V \Rightarrow \operatorname{dim}(V)=n
$$

(3) $\operatorname{dim}(V)=n$.
$1 \$ 3 \Rightarrow S$ is a basis for $\operatorname{Span}(S) \Rightarrow \operatorname{dim}(\operatorname{Span}(S))=n=\operatorname{dim}(V)$
$S_{p a n}(S)$ subspace of $V \Rightarrow \operatorname{span}(S)=V$
$2 \$ 3$: Suppose S is not linearly ind. Then $\exists a_{1, \ldots,} a_{n} \in \mathbb{R}$ not all zero sit.

$$
\begin{aligned}
& \text { Suppose } S \text { is not linearly ind. Then } \exists a_{1, \ldots,} a_{n} \notin \mathbb{N} \\
& a_{1} v_{1}+\ldots+a_{n} v_{n}=\overrightarrow{0} \text {. Suppose } a_{n} \neq 0 \text {. Then } v_{k}=-\frac{1}{a_{n}}\left(v_{1}+\ldots+v_{k-1}+v_{u+1}+\ldots+v_{n}\right) \text {, } \\
& c^{\prime}=S \backslash\left\{v_{u}\right\} \text { It then follows that } \operatorname{Span}\left(S^{\prime}\right)=\text { Span }
\end{aligned}
$$

i.e. $v_{k} \in \operatorname{Span}\left(S^{\prime}\right)$ where $S^{\prime}=S \backslash\left\{V_{n}\right\}$. It then follows that $\operatorname{Span}\left(S^{\prime}\right)=\operatorname{Span}(S)=V$. But then V has a spanning set of size $n-1<n=\operatorname{dim}(v)$, which is a contradiction. So, s must be lin. ind.
Ex. 1. Let V be a vector space. Is the set $\left\{x, 1+x,-1-2 x+x^{2}\right\}$ a basis of $P_{2}(\mathbb{R})$? Justify your answer.
Call this set S_{1} First we check if S is linearly independent.
Let $a_{1}, a_{2}, a_{3} \in \mid R$ be such that $a_{1} x+a_{2}(1+x)+a_{3}\left(-1-2 x+x^{2}\right)=0$.
Combining like terms, $\left(a_{2}-a_{3}\right)+\left(a_{1}+a_{2}-2 a_{3}\right) x+a_{3} x^{2}=0$.
Then we must have $a_{1}+a_{2}-2 a_{3}=0$ which implies that $a_{2}=0$ and $a_{3}=0$.

$$
\begin{aligned}
a_{2}-a_{3} & =0 \\
a_{3} & =0
\end{aligned}
$$

Thus, $a_{1}=a_{2}=a_{3}=0$ and so S is linearly independent. $\operatorname{since} \operatorname{dim}\left(p_{2}(\mathbb{R})\right)=3$ and S has 3 elements, S must $\operatorname{span} P_{2}(\mathbb{R})$ as wall. Therefore, S is a basis for $P_{2}(\mathbb{R})$.
2. Linear Transformations
(References: Comps Study Guide for Linear Algebra Section 2;
Damiano \& Little, A Course in Linear Algebra, Chapter 2)
Linear Transformations: Let V and W be vector spaces and $T: V \rightarrow W$. Write down the conditions) that T must satisfy in order to be linear.
For all $x, y \in V$ and $c \in \mathbb{R}$, we must have $T(c x+y)=c T(x)+T(y)$.
This single condition can be replaced with (1) $T(x+y)=T(x)+T(y)$
and (2) $T(c x)=c T(y)$
Roll: We say that T respects (or preserves) the addition $\$$ scalar multiplication.
Ex. 2. Let T be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2}. Suppose that $T(1,2)=(3,4)$ and $T(2,3)=(1,1)$. Find $T(x, y)$ for $(x, y) \in \mathbb{R}^{2}$.
we know $T(1,2)$ and $T(2,3)$ so we write (x, y) in terms of these vectors.
Set $(x, y)=c_{1}(1,2)+c_{2}(2,3)=\left(c_{1}+2 c_{2}, 2 c_{1}+3 c_{2}\right)$. Then

$$
\left\{\begin{array} { r l }
{ c _ { 1 } + 2 c _ { 2 } = x } \\
{ 2 c _ { 1 } + 3 c _ { 2 } = y }
\end{array} \xrightarrow { - 2 E 1 + E 2 \rightarrow E 2 } \left\{\begin{array}{rl}
c_{1}+2 c_{2}=x \\
-c_{2}=-2 x+y
\end{array} \Rightarrow \begin{array}{l}
c_{2}
\end{array}=2 x-y .\right.\right.
$$

So, $(x, y)=(-3 x+2 y)(1,2)+(2 x-y)(2,3)$. Applying T, we have

$$
\begin{aligned}
T(x, y) & =T[(-3 x+2 y)(1,2)+(2 x-y)(2,3)] \\
& =(-3 x+2 y) T(1,2)+(2 x-y) T(2,3) \\
& =(-3 x+2 y)(3, y)+(2 x-y)(1,1) \\
& =(-9 x+6 y,-12 x+8 y)+(2 x-y, 2 x-y) \\
& =\left(-7 x+5^{\prime} y,-10 x+7 y\right) \quad T h u s, T(x, y)=(-7 x+5 y,-10 x+7 y) .
\end{aligned}
$$

Ex. 3. Let $T: V \rightarrow W$ be a linear transformation between vector spaces V and W. Prove that $T\left(\overrightarrow{0}_{V}\right)=\overrightarrow{0}_{W}$.
(Note: This is a very commonly used result, which you should remember.)
$\sin \alpha \quad O_{v}+O_{r}=O_{v}$, we have $T\left(O_{s}+O_{v}\right)=T\left(O_{v}\right)$. Since T is linear, this becomes $T\left(O_{V}\right)+T\left(O_{V}\right)=T\left(Q_{V}\right)$. Adding $-T\left(O_{V}\right)$ to both sides,

$$
\begin{aligned}
& T\left(o_{v}\right)+T\left(o_{v}\right)+-T(o v)=T\left(o_{v}\right)+-T\left(o_{v}\right) \quad \text { or } \\
& T(o v)+o_{w}=o_{w}, \quad \sin a \quad T(o v)+o_{w}=T\left(o_{v}\right), \quad T\left(o_{v}\right)=\gamma_{w} .
\end{aligned}
$$

Kernel (Nullspace): Let $T: V \rightarrow W$ be a linear transformation. Write down a definition of the kernel of T.

$$
\operatorname{ker}(T)=\left\{v \in v \mid T(v)=O_{w}\right\}
$$

Nullity: The dimension of the kernel of $T, \operatorname{dim}(\operatorname{ker}(T))$, is called the nullity of T.
Image (Range): Let $T: V \rightarrow W$ be a linear transformation. Write down a definition of the image of T.

$$
\operatorname{lm}(T)=\{w \in W \mid w=T(v) \text { for some } v \in V\}
$$

Rank: The dimension of the image of $T, \operatorname{dim}(\operatorname{Im}(T))$, is called the rank of T.
Matrices: Let $A \in M_{m \times n}(\mathbb{R})$ be an $m \times n$ matrix. Then $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(x)=A x$ is linear. In this case, the image of T is the span of the columns of A, and so is called the column space of A.
Ex. 4. Let $A=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 5 & 5 & 7 & 7 & 7\end{array}\right]$.
(a) Find a basis for the column space of A.
(b) Find a basis for the null space (or kernel) of A.
(c) Find the general solution of the equation $A \vec{x}=\overrightarrow{0}$.

We begin by row-reducing A.

$$
\xrightarrow{R|-R 2+R|}\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

a) There are pivots in columns 1 and 3 , so a basis of the column space is formed by the lIst 3 rd columns of the matrix, ie. a basis of Column space is $\left\{\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 7\end{array}\right)\right\}$.
b) Setting $T(x)=A x=\overrightarrow{0}$ leads to the augmented matrix $\left[\begin{array}{ccccc|c}1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
using rue rowrreduction from above. This corresponds to the equations

Thus, a basis for the null space of A is $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right)\right.$.
c) By part b, the general solution of $A \vec{x}=\overrightarrow{0}$ is $x_{2}\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right)+x_{y}\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 9\end{array}\right)$ for $x_{2}, x_{1}, x_{5} \in \mathbb{R}$.

$$
\begin{aligned}
& \left\{x_{1}+x_{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}+x_{4}+x_{5}=0 \\
& x_{2}, x_{4}, x_{5} \text { free. }
\end{aligned}
$$

One-to-one: Let $T: V \rightarrow W$. Write down what it means to say that T is one-to-one (injective).
If $T\left(V_{1}\right)=T\left(V_{2}\right)$ for some $V_{1}, V_{2} \in V$, then $V_{1}=V_{2}$.
Onto: Let $T: V \rightarrow W$. Write down what it means to say that T is onto (surjective).

$$
\binom{o r}{\operatorname{lm}(T)=W}
$$

Isomorphism: A linear transformation that is both one-to-one and onto is called an isomorphism.

Ex. 5. Let V and W be vector spaces and let T be a linear transformation from V to W. Prove that T is one-to-one if and only if $\operatorname{ker}(T)=\left\{\overrightarrow{0}_{V}\right\}$. (Note: This is a commonly used result, which you should remember.)
\Rightarrow First suppose that T is one-to-one. Since T is linear, we already know that $O_{v} \in \operatorname{kerT}$ and so $\{0 r\} \subseteq \operatorname{ker}(T)$. For the reverse containment, let $x \in \operatorname{ker}(T)$. Then $T(x)=O_{W}$. But $T(O r)=O_{W}=T(x)$ and $\sin \varphi T$ is one-to-one, we must have $x=0 v$. Thus, $\operatorname{ker}(T) \subseteq\left\{O_{v}\right\}$. So, $\operatorname{ker}(T)=\left\{\overrightarrow{O_{v}}\right\}$,
\leftarrow Now suppose that $\operatorname{Ker}(T)=\left\{\vec{O}_{v}\right\}$. We want to show that T is one-to-one, So suppose that $T\left(v_{1}\right)=T\left(v_{2}\right)$ for $v_{1}, v_{2} \in V$. Adding $-T\left(v_{2}\right)$ to both sides, we have $T\left(v_{1}\right)+-T\left(v_{2}\right)=O_{W}$ and since T is linear, $T\left(v_{1}+-v_{2}\right)=0 w$. Then $V_{1}+-v_{2} \in \operatorname{Re}(T)=\{0 r\}$. Thus, $V_{1}+-v_{2}=O_{V}$ which implies that $V_{1}=v$, Thus, T is one-to-one.

Ex. 6. Let $T: V \rightarrow V$ be a linear transformation on a finite dimensional vector space V. Suppose that T is one-to-one. Prove that if $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is a basis for V then $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots T\left(v_{n}\right)\right\}$ is also a basis for V.
Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V. We want to shows that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is also a basis for V, so we first show that this set is linearly independent. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that $a_{1} T\left(v_{1}\right)+\ldots+a_{n} T\left(v_{n}\right)=0$.
Since T is linear, $T\left(a_{1} v_{1}+\ldots+a_{n} v_{n}\right)=0$ and so $a_{1} v_{1}+\ldots+a_{n} v_{n} \in \operatorname{ker}(T)$. And since T is oneto-one, $\operatorname{ker}(T)=\{0\}$ so $a_{1} v_{1}+\ldots+a_{n} v_{n}=0$.
But $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent, so we must have $a_{1}=\ldots=a_{n}=0$.
Hence, $\left\{T\left(V_{1}\right), \ldots, T\left(V_{n}\right)\right\}$ is linearly independent as well. Now since
$\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for $v, \operatorname{dim}(v)=n$. Then since $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ also
has n elements and is linearly independent, this set must $\operatorname{Span} V$ as well. Thus, $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis of V.

Ex. 7. Let V be a vector space and $S=\left\{v_{1}, v_{2}\right\}$ be a subset of V. Define $T: \mathbb{R}^{2} \rightarrow V$ by

$$
T\left(x_{1}, x_{2}\right)=2 x_{1} v_{1}+3 x_{2} v_{2}
$$

(a) Prove that T is linear.
(b) Prove that if S is linearly independent then T is one-to-one.
(c) Prove that if $\operatorname{Span}(S)=V$ then T is onto.
a) Let $c \in \mathbb{R}$ and $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ be in \mathbb{R}^{2}.

$$
\begin{aligned}
T(c x+y) & =T\left(c x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)=2\left(c x_{1}+y_{1}\right) v_{1}+3\left(c x_{2}+y_{2}\right) v_{2} \\
& =c\left(2 x_{1} v_{1}+3 x_{2} v_{2}\right)+\left(2 y_{1} v_{1}+3 y_{2} v_{2}\right)=C T(x)+T(y)
\end{aligned}
$$

Thus, T is linear.
b) Suppose that S is linearly independent, we want to show that T is one to -one, so let $T(x)=T(y)$ for some $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2}.
Then $2 x_{1} v_{1}+3 x_{2} v_{2}=2 y_{1} v_{1}+3 y_{2} v_{2}$ and subtracting gives $\left(2 x_{1}-2 y_{1}\right) v_{1}+\left(3 x_{2}-3 y_{2}\right) v_{2}=0$. Since $\left\{v_{1}, v_{2}\right\}$ is linearly independent, we must have $2 x_{1}-2 y_{1}=0$ and $3 x_{2}-3 y_{2}=0$. Thus, $x_{1}=y_{1}$ and $x_{2}=y_{2}$. So $x=y$ and T is oneto-one.
c) Suppose that $\operatorname{Span}(S)=V$. We want to show that T is onto, so let $V \in V$. We want to find an $X \in \mathbb{R}^{2}$ sit. $T(X)=V$

Scratchwork: $T(x)=2 x_{1} v_{1}+3 x_{2} v_{2}=v$
$\operatorname{Span}(s)=V \Rightarrow V=c_{1} v_{1}+c_{2} V_{2}$ for some $c_{1}, c_{2} \in \mathbb{R}$
So we need $2 x_{1}=c_{1}$ and $3 x_{2}=c_{2}$
Then set $x_{1}=\frac{1}{2} c_{1}$ and $x_{2}=\frac{1}{3} c_{2}$.
Since $S_{p a n}(S)=V$, we can write $V=c_{1} V_{1}+c_{2} V_{2}$ for some $c_{1}, c_{2} \in \mathbb{R}$.
Let $x_{1}=\frac{1}{2} c_{1}$ and $x_{2}=\frac{1}{3} c_{2}$. Then for $x=\left(x_{1}, x_{2}\right)$ we have

$$
\begin{aligned}
& \text { Let } x_{1}=\frac{1}{2} c_{1} \text { and } \\
& T(x)=2\left(\frac{1}{2} c_{1}\right) v_{1}+3\left(\frac{1}{3} c_{2}\right) v_{2}=c_{1} v_{1}+c_{2} v_{2}=V
\end{aligned}
$$

Thus, T is onto.

One-to-one, Onto, and Dimension: Let $T: V \rightarrow W$ be linear.

- T is one-to-one if and only if $\operatorname{nullity}(T)=0$. ($\mathbf{E X}, \boldsymbol{S}$)
- If $\operatorname{dim}(W)<\infty, T$ is onto if and only if $\operatorname{rank}(T)=\operatorname{dim}(W)$.

Rank-Nullity Theorem (Dimension Theorem): $\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)$
Challenge: Explain how the following "two-out-of-three theorem" follows from the Rank-Nullity Theorem and the two results above.

Two-out-of-three Theorem for Linear Transformations: Let $T: V \rightarrow W$ be a linear transformation, and suppose that at least one of V, W is finite-dimensional. If any two of the following conditions hold, then all three hold (and so T is an isomorphism).
(1) T is one-to-one. $\quad \mid \$ 2 \Rightarrow \operatorname{nullity}(T)=0, \operatorname{rank}(T)=\operatorname{dim}(\omega) \Rightarrow \operatorname{dim}(\omega)+0=\operatorname{dim}(V)$
(2) T is onto.
(3) $\operatorname{dim}(V)=\operatorname{dim}(W)$.

$$
\begin{aligned}
& 1 \$ 3 \Rightarrow \operatorname{rank}(T)+0=\operatorname{dim}(V)=\operatorname{dim}(W) \\
& 2 \$ 3 \Rightarrow \operatorname{dim}(W)+\text { nullity }(T)=\operatorname{dim}(W)
\end{aligned}
$$

Ex. 8. Let A be a 4×6 matrix with real coefficients.
(a) Can the columns of A be linearly independent?
(b) Prove that the nullity of A is at least 2 .
(c) Does the equation $A \vec{x}=\overrightarrow{0}$ have a unique solution?

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{16} \\
a_{21} & \cdots & & \\
a_{31} & & & \\
a_{41} & & & a_{46}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{4}
\end{array}\right]
$$

(d) Assume that the nullity of A is exactly 2 . What does this imply about the rank of A ?
a) The columns of A form a set of six vectors in \mathbb{R}^{4}. Since $\operatorname{dim}\left(\mathbb{R}^{4}\right)=Y$, this set cannot be linearly independent.
b) Since A is $4 \times 6, A$ maps $V=\| R^{6}$ into $W=1 R^{4}$.

Then from the rank-nullity theorem, $\operatorname{rank}(A)+n u l l i t y(A)=b$,
Since the $\operatorname{lm}(A)$ is a subspace of \mathbb{R}^{4}, the possible values for $\operatorname{ranl}(A)$ are $0,1,2,3$, or 4 . Hence, the possible values for nullity (A) are $6,5,4,3$, or 2 . So, the nullity is at least 2.
c) Since the nullity is at least 2 , the kernel of A is not trivial. Thus, the equation $A \vec{x}=\overrightarrow{0}$ does not have a unique solution.
d) If nullity $(A)=2$ then $\operatorname{rank}(A)=4$.

Ex. 9. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map such that $\|T(\mathbf{x})\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Prove that T is an isomorphism.
We first shat that T is one-to-one by shoring $\operatorname{ker}(T)=\{\overrightarrow{0}\}$. Let $x \in \operatorname{ker}(T)$.
Then $T(x)=\overrightarrow{0}$ and so $\|T(x)\|=\|\vec{b}\|=0$. Then sine $\|T(x)\|=\|x\|$, we have $\|x\|=0$. Hence, $x=\overrightarrow{0}$. So, $\operatorname{ker}(T)=\{\overrightarrow{0}\}$ and T is one-to-one. And since $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and clearly $\operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim}\left(\mathbb{R}^{n}\right)=n, T$ must also be onto. T hus, T is an isomorphism.

Ex. 10. Let $P_{2}=\left\{a+b t+c t^{2}: a, b, c \in \mathbb{R}\right\}$ and $T: P_{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(p)=\left[\begin{array}{c}p(1) \\ p^{\prime}(1)\end{array}\right]$.
(a) Prove that T is linear.
(b) Find a basis for the kernel (or null space) of T.
(c) Find the rank and nullity of T.
(d) Is T one-to-one? Is T onto? Justify your answers.
a) Let $p_{1} q \in p_{2}$ and $k \in \mathbb{R}$. Then

$$
\begin{aligned}
& \text { (d) Is } T \text { one-to-one? Is } T \text { onto? Justify your answers. } \\
& p_{1} q \in p_{2} \text { and } k \in \mathbb{R} \text {. Then } \\
& \left.T(k p+q)=\left[\begin{array}{l}
(k p+q)(1) \\
(k p+q)^{\prime}(1)
\end{array}\right]=\left[\begin{array}{l}
k p(1)+q(1) \\
k p^{\prime}(1)+q^{\prime}(1)
\end{array}\right]=\begin{array}{l}
k(1) \\
p^{\prime}(1)
\end{array}\right]+\left[\begin{array}{l}
q^{(1)} \\
q^{\prime}(1)
\end{array}\right]=k T(p)+J(q) \text {. } \\
& \text { Thus } T \text { is linear. }
\end{aligned}
$$

Thus, T is linear.

$$
\left\{\begin{array} { r l }
{ a + b + c } & { = 0 } \\
{ b + 2 c = 0 }
\end{array} \quad \xrightarrow { \text { b) Let } p (t) = a + b t + c t + E) } \left\{\begin{array}{l}
a \quad-c=0 \\
b+2 c=0
\end{array} \Rightarrow \begin{array}{l}
a=c \\
b=-2 c \\
c \text { free }
\end{array}\right.\right.
$$

Then $p(t)=c t-2 c t+c t^{2}=c\left(1-2 t+t^{2}\right)$. So $\left\{1-2 t+t^{2}\right\}$ is a basis ot $\operatorname{ker}(T)$.
c) By part b, nullity $(T)=1$ and since $\operatorname{dim}\left(P_{2}\right)=3$, $\operatorname{rank}(T)=2$ by the rank-nullity theorem.
d) Since nullity $(T)=1 \neq 0, T$ is not one-to-one. Sine $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2=\operatorname{rank}(T)$, T is onto.

Additional Problems

Ex. 11. Let V be a vector space. Suppose that $\{u, v, w\}$ is a basis of V. Is the set $\{u+2 v, v+2 w, u+2 w\}$ also a basis of V ? Justify your answer. Use the strategy from EXII
Ex. 12. Let V_{1} and V_{2} be vector spaces and let $T: V_{1} \rightarrow V_{2}$ be a linear transformation. For $W_{2} \subseteq V_{2}$, let $W_{1}=\left\{v \in V_{1}: T(v) \in W_{2}\right\}$. Show that if W_{2} is a subspace of V_{2} then W_{1} is a subspace of V_{1}. similar to Ex, 13 b .
Ex. 13. Let $T: V \rightarrow W$ be a linear transformation between vector spaces V and W. Prove the following.

(a) The kernel of T is a subspace of V. see Prop $2.3,2$ in text for a proot
(b) The image of T is a subspace of W.
11

Ex. 14. Let $A=\left[\begin{array}{cccc}1 & -1 & 1 & 3 \\ -1 & 1 & 0 & -2 \\ 2 & -2 & 4 & 11\end{array}\right]$. Find bases for the column space and null space of A. similar to Ex, y
Ex. 15. Let $T: \mathbb{R}^{3} \rightarrow P_{2}(\mathbb{R})$ be defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}\right)+a_{2} x+\left(a_{1}+a_{3}\right) x^{2}$. Prove that T is an isomorphism. hote: $\operatorname{dim}\left(\mathbb{R}^{3}\right)=\operatorname{dim}\left(P_{2}\right)$ so only need to show $1-1$
Ex. 16. Let V and W be vector spaces and let T be a linear transformation from V to W. Suppose that T is one-to-one and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is a set of n linearly independent vectors in V. Prove that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots T\left(v_{n}\right)\right\}$ is linearly independent in W. Similar to Ex:b
Ex. 17. Let V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. Suppose that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots T\left(v_{n}\right)\right\}$ is linearly independent.
(a) Prove that $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is linearly independent. Start w ith $a_{1} v_{1}+\ldots+a_{n} v_{n}=0$ and take J of both sided
(b) Suppose in addition that $\operatorname{Span}\left(\left\{v_{1}, v_{2}, \ldots v_{n}\right\}\right)=V$. Prove that T is one-to-one. Lat $x=a_{1} v_{1}+\ldots .+a_{n} V_{n} \in k r T$

Ex. 18. Let V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. For $c \in \mathbb{R}$ with $c \neq 0$, define a $\operatorname{map} S: V \rightarrow W$ by $S(v)=c T(v)$. Prove that if T is onto then S is onto as well. Let $W^{\in} W$ and $V \in V$ sit. $T(V)=W$
Ex. 19. Let $V=M_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 matrices with real coefficients and $W=P_{2}(\mathbb{R})$ be the vector space of polynomials of degree less than or equal to 2 . Suppose that $T: V \rightarrow W$ is a linear transformation. $\quad \operatorname{dim}(V)=2 \cdot 2=4 \quad \operatorname{dim}(w)=3$
(a) Explain what is meant by the kernel, or null space, of $T . \quad 4=n v \|(T)+\operatorname{ranh}(T) \quad$ max $=3$
(b) What are the possible values of the nullity, or the dimension of the kernel, of T ? Justify your answer. $1,2,3$, or 4
(c) Can T be one-to-one? Can T be onto?

Ex. 20. Let $T: V \rightarrow W$ be an isomorphism between finite dimensional vector spaces V and W. Let U be a subspace of V and let $T(U)=\{T(u): u \in U\}$. Prove that $\operatorname{dim}(U)=\operatorname{dim}(T(U))$.

$$
\text { Let }\left\{u_{1}, \ldots, u_{n}\right\} \text { be a basis for } U \text { and show that }\left\{T\left(u_{1}\right)_{1} \ldots, T\left(u_{n}\right)\right\} \text { is a basis for } T(u)
$$

