2. Functions of Several Variables (from Stewart, Calculus, Chapter 14)

Functions of Two Variables: $f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{2}$. The graph of the function $f(x, y)$ is the set of all points $(x, y, z) \in \mathbb{R}^{3}$ such that $(x, y) \in D$ and $z=f(x, y)$. The graph of a function of two variables is a surface in \mathbb{R}^{3}.

Functions of Three Variables: $f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{3}$. The graph of a function $f(x, y, z)$ of three variables would lie in \mathbb{R}^{4}. For a visual representation, we often look instead at the level surfaces of f, ie. the surfaces in \mathbb{R}^{3} with equations $f(x, y, z)=k$ for constants k.

Graph of $f(x, y)$

Continuity: A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.
Partial Derivatives ${ }^{\pi}$ ole: the value must be the same as $(x, y) \rightarrow(a, b)$ along any possible path.

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \quad \text { and } \quad f_{y}=\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

Shortcut for Finding Partial Derivatives

- To find f_{x}, regard y as constant and differentiate $f(x, y)$ with respect to x.
- To find f_{y}, regard x as constant and differentiate $f(x, y)$ with respect to y.

Ex. 1. Consider the function $f(x, y)=\left\{\begin{aligned} \frac{4 x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0) .\end{aligned}\right.$
(a) Show that f is continuous at $(0,0)$.

First we change to polar coordinates. Let $x=r \cos \theta, y=r \sin \theta$. Then $x^{2}+y^{2}=r^{2}$ and

$$
\begin{aligned}
& \text { First we change to pear cording } \\
& \frac{4 x^{3}}{x^{2}+y^{2}}=\frac{4 r^{3} \cos ^{3} \theta}{r^{2}}=4 r \cos ^{3} \theta \text {. Now } \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{r \rightarrow 0^{+}} 4 r \cos ^{3} \theta \text {. since }-1 \leq \cos \theta \leq 1 \text {, }
\end{aligned}
$$

$-4 r \leq 4 r \cos ^{3} \theta \leq 4 r$ for $r>0$. And $\lim _{r \rightarrow 0^{+}}(-4 r)=0=\lim _{r+0^{+}}(4 r)$ so by the
Squeeze Theorem, $\lim _{r \rightarrow 0^{+}} 4 r \cos ^{3} \theta=0$ as well. Thus, $\lim _{(x, y) \rightarrow(0,0)} f(x)=0=f(0,0)$ and
so f is continuous at $(0,0)$.
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

$$
\begin{aligned}
f_{x}(0,0) & =\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{4 h^{3}}{h^{2}}-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 h^{3}}{h^{3}} \\
& =4
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{0}{h}
$$

$$
=0
$$

Ex. 2. Let $f(x, y)=\left\{\begin{aligned} \frac{3 x^{2} y^{2}}{2 x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0) \text {. }\end{aligned}\right.$
(a) Is f continuous at $(0,0)$? Justify your answer.

$$
\text { In polar coordinates, } f(r \cos \theta, r \sin \theta)=\frac{3 r^{4} \cos ^{2} \theta \sin ^{2} \theta}{2 r^{4} \cos ^{4} \theta+r^{4} \sin ^{4} \theta}=\frac{3 \cos ^{2} \theta \sin ^{2} \theta}{2 \cos ^{4} \theta+\sin ^{4} \theta}
$$

So $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{r \rightarrow 0^{+}} \frac{3 \cos ^{2} \theta \sin ^{2} \theta}{2 \cos ^{4} \theta+\sin ^{4} \theta}$ is dependent on the angle θ
For example, if we approach along the positive x-axis, we have

$$
y \uparrow \theta=\pi / 4 \quad \lim _{\substack{(x, y) \rightarrow(0,0) \\ x>0, y=0}} f(x, y)=\lim _{\substack{r \rightarrow 0^{+} \\ x>0}} \frac{3 \cos ^{2} \theta \sin ^{2} \theta}{2 \cos ^{4} \theta+\sin ^{4} \theta}=\lim _{r \rightarrow 0^{+}} \frac{0}{2}=0
$$

On the other hand, approaching along the line $g=x$ for $x>0$,

$$
\begin{aligned}
& \text { On the other hand, approaching along the } \\
& \lim _{x, y) \rightarrow(0,0)} f(x, y)=\lim _{r \rightarrow 0^{+}} \frac{3 \cos ^{2} \theta \sin ^{2} \theta}{2 \cos ^{4} \theta+\sin ^{4} \theta}=\frac{3\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\frac{1}{\sqrt{2}}\right)^{2}}{2\left(\frac{1}{\sqrt{2}}\right)^{4}+\left(\frac{1}{\sqrt{2}}\right)^{4}}=\frac{\frac{3}{4}}{3 / 4}=1 \\
& y=x, x>0 \quad \theta=\frac{\pi}{4}
\end{aligned}
$$

$y=x, x>0 \quad \theta=\frac{\pi}{4} \quad$ the limit him $f(x, y)$
since we get different values along different path $(0,0)$.
does not exist and hence f is not continuous at $(0,0)$.

$$
\begin{array}{rlrl}
f_{x}(0,0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0,0)}{h} & f y(0,0) & =\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3 h^{2} \cdot 0}{2 h^{4}+0}-0}{h} & =\lim _{h \rightarrow 0} \frac{3 \cdot 0 \cdot h^{2}}{\frac{2 \cdot 0+h^{4}}{h}-0} \\
& =\lim _{h \rightarrow 0} \frac{0}{h} & & \lim _{h \rightarrow 0} \frac{0}{h} \\
& =0 & & =0
\end{array}
$$

Level Curves and Level Surfaces

Def. The level curves of a function f of two variables are the curves in the $x y$-plane with equation $f(x, y)=k$ for any constant k. Level curves are the projection onto the $x y$-plane of traces of the surface in the planes $z=k$. (A contour map is a collection of level curves.)

Def. The level surfaces of a function $f(x, y, z)$ are the surfaces with equations $f(x, y, z)=k$.

(a) Contour map

(b) Horizontal traces are raised level curves

Directional Derivatives and the Gradient Vector

Directional Derivatives $\quad\|\vec{u}\|=1$
Given a unit vector $\vec{u}=\langle a, b\rangle$, the vertical plane through $\left(x_{0}, y_{0}\right)$ in the direction of \vec{u} intersects S in a curve C. The slope of the tangent line to C at the point $\left(x_{0}, y_{0}\right)$ gives the rate of change of f at $\left(x_{0}, y_{0}\right)$ in the direction of the unit vector \vec{u}. This is called the directional derivative of f in the direction of \vec{u}, and is denoted $D_{\vec{u}} f\left(x_{0}, y_{0}\right)$.

Note that the partial derivatives f_{x} and f_{y} are the directional derivatives of f in the directions of \vec{i} and \vec{j}, respectively.

Thm. If f is a differentiable function then f has a directional derivative in the direction of any unit vector \vec{u} and

$$
D_{\vec{u}} f=\nabla f \cdot \vec{u}
$$

The Gradient Vector

$$
\nabla f(x, y)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \quad \text { or } \quad \nabla f(x, y, z)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

Properties of the Gradient: Let θ be the angle between a unit vector \vec{u} and ∇f at a point P.

$$
D_{\vec{u}} f=\nabla f \cdot \vec{u}=\|\nabla f\| \cos (\theta) \quad\|\nabla f\|=\sqrt{(f x)^{2}+(f y)^{2}}
$$

1. The maximum value of the directional derivative $D_{\vec{u}} f(P)$ at a point P is $\|\nabla f(P)\|$ and it occurs when \vec{u} has the same direction as the gradient vector $\nabla f(P)$. So $\nabla f(P)$ points in the direction of maximum rate of increase of f at P.
2. $\nabla f(x, y)$ is perpendicular to the level curves of a function $f(x, y)$. Similarly, $\nabla f(x, y, z)$ is perpendicular to the level surfaces of a function $f(x, y, z)$.

Ex. 3. Find the directional derivative of the function $f(x, y, z)=y^{2} e^{x y z}$ at the point $(0,1,-1)$ in the direction of the vector $\langle 4,2,1\rangle=\vec{V}$
$\|\vec{v}\|=\sqrt{4^{2}+2^{2}+1^{2}}=\sqrt{21}$ so the unit vector is $\vec{u}=\frac{1}{\sqrt{21}}\langle 4,2,1\rangle$

$$
\begin{aligned}
& \nabla f=\left\langle y^{2} y z e^{x y z}, 2 y e^{x y z}+y^{2} x z e^{x y z}, y^{2} x y e^{x y z}\right\rangle \\
& \nabla f(0,1,-1)=\langle-1,2,0\rangle \\
& D \vec{u}^{f}(0,1,-1)=\langle-1,2,0\rangle \cdot \frac{1}{\sqrt{21}}\langle 4,2,1\rangle=\frac{1}{\sqrt{21}}(-4+4+0)=0
\end{aligned}
$$

Ex. 4. Let $f(x, y)=2 x^{2}+x y^{2}$. Find a unit vector that points in the direction of the maximum rate of increase at the point $(1,2)$. What is the rate of change of f in this direction?
The max rate of increase is in the direction of the gradient at $(1,2)$.
$\nabla f(x, y)=\left\langle 4 x+y^{2}, 2 x y\right\rangle$ and $\nabla f(1,2)=\langle 8,4\rangle$, so

$$
\nabla f(x, y)=\langle\psi x+y, 2 x y\rangle=\sqrt{8^{2}+y^{2}}=\sqrt{80}=4 \sqrt{5} \text {. Then } \vec{u}=\frac{1}{4 \sqrt{5}}\langle 8, y\rangle=\frac{1}{\sqrt{5}}\langle 2,1\rangle
$$

is a unit vector pointing in the direction of \max. increase.
And the rate of increase of f in this direction is $\|\nabla f(1,2)\|=4 \sqrt{5}$.

Ex. 5. The temperature at the point (x, y, z) is $T(x, y, z)=\frac{1}{\pi} \sin (\pi x y)+\ln \left(z^{2}+1\right)+60$.
(a) Let $\vec{v}=-\vec{i}+2 \vec{j}+2 \vec{k}$. What is the rate of change of the temperature at the point $(2,-1,1)$ in the direction of \vec{v} ?

$$
\begin{aligned}
& \|\vec{v}\|=\sqrt{1+4+4}=3 \text { so } \vec{u}=\frac{1}{3}\langle-1,2,2\rangle . \\
& \nabla T=\left\langle\frac{1}{\pi} \cdot \pi y \cos (\pi x y), x \cos (\pi x y), \frac{1}{z^{2}+1} \cdot 2 z\right\rangle \\
& \nabla T(2,-1,1)=\left\langle-\cos (-2 \pi), 2 \cos (-2 \pi), \frac{1}{2} \cdot 2(1)\right\rangle=\langle-1,2,1\rangle \\
& \text { So } D \vec{u} T(2,-1,1)=\frac{1}{3}\langle-1,2,2\rangle \cdot\langle-1,2,1\rangle=\frac{1}{3}(1+4+2)=\frac{7}{3}
\end{aligned}
$$

Thus, the rate of change of T at $(2,-1,1)$ in the direction of \vec{V} is $\frac{7}{3}$.
(b) Find a vector pointing in the direction in which the temperature increases most rapidly at the point $(2,-1,1)$.

The temperature increases most rapidly in the direction of $\nabla T(2,-1,1)=\langle-1,2,1\rangle$ from part a.

Ex. 6. A hiker is walking on a mountain path. The surface of the mountain is modeled by $f(x, y)=$ $1-4 x^{2}-3 y^{2}$. The positive x-axis points to the East direction and the positive y-axis points North.
(a) Suppose the hiker is now at the point $P(1 / 4,-1 / 2,0)$ and heading North. Is she ascending or descending?

A unit vector pointing north is $\vec{u}=\langle 0,1\rangle$.

$$
\nabla f(x, y)=\langle-8 x,-6 y\rangle \text { so } \nabla f\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle
$$

$\left.D_{\vec{u}}+\left(\frac{1}{4},-\frac{1}{2}\right)=\langle-2,3\rangle \cdot\langle 0,1\rangle=3\right\rangle 0$. So the hiker is ascending.
(b) When the hiker is at the point $Q(1 / 4,0,3 / 4)$, in which direction should she initially head to descend most rapidly?
$D \vec{u} f(x, y)=\nabla f(x, y) \cdot \vec{u}=\|\nabla f(x, y)\| \cos \theta$ where θ is the angle between $\nabla f(x, y)$ and \vec{u}. Since $\|\nabla f(x, y)\|$ at $(x, y)=\left(\frac{1}{4}, 0\right)$ is fixed, $D_{u} f\left(\frac{1}{y}, 0\right)$ will take its largest negative value when $\cos \theta=-1$, ie. $\theta=\pi$. Thus, the hiker will descend most rapidly if she initially heads in the direction opposite to $\nabla f\left(\frac{1}{4}, 0\right)=\langle-2,0)$. Thus, she should initially head in the direction of $\langle 2,0\rangle$ or east.

Tangent Planes
Tangent Planes: The tangent plane to a surface S at a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ is the plane containing the tangent line to any curve C on S passing through P.

Equations of Tangent Planes
If S is the graph of a function, ie. $z=f(x, y)$ is given explicitly as a function of x and y :

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

If S is the graph of a level surface $F(x, y, z)=k$ and $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq 0$:

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

Rms. This second equation is just the usual scalar equation of a plane, with $\vec{n}=\nabla F$. This equation can be used in the first case as well.

$$
\text { rearranging: } z=f(x, y) \Rightarrow \underbrace{f(x, y)-z}_{F(x, y, z)}=0
$$

Ex. 7. Let $f(x, y)=y+\sin (x / y)$. Find an equation of the tangent plane to the graph of $z=f(x, y)$ at the point $(0,3,3)$.

$$
f_{x}=\frac{1}{y} \cos (x / y) \quad f_{y}=1+\frac{-x}{y^{2}} \cos (x / y)
$$

$$
f_{x}(0,3)=\frac{1}{3} \quad f_{y}(0,3)=1
$$

Then an eg. of the tangent plane is $z-3=\frac{1}{3}(x-0)+1(y-3)$

$$
\text { or } \frac{1}{3} x+y-z=0
$$

Ex. 8. Consider the surface S given by the equation $x^{2} y-y z^{2}+z=1$.
(a) Find an equation of the tangent plane to S at the point $(11,0,1)$.

Let $F(x, y, z)=x^{2} y-y z^{2}+z$. Then $\nabla F(x, y, z)=\left\langle 2 x y, x^{2}-z^{2},-2 y z+1\right\rangle$ and $\nabla F(11,0,1)=\langle 0,120,1\rangle$. So an eq of the tangent plane is $0(x-11)+120(y-0)+1(z-1)=0$ or $120 y+z=1$.
(b) Find two points on the surface S where the tangent plane at P is parallel to the $y z$-plane. \times
 If the tangent plane is $\|$ to the $y z$-plane, the normal vector is $\|$ to $\langle 1,0,0\rangle$. Thus, we want two points sit. $x^{2} y-y z^{2}+z=1$ and $\nabla F(x, y, z) \|\langle 1,0,0\rangle$, ie. $\left\langle 2 x y, x^{2}-z^{2},-2 y z+1\right\rangle=\lambda\langle 1,0,0\rangle$ for some $\lambda \in \mathbb{R}$. This gives

$$
\begin{aligned}
& 2 x y=\lambda \\
& x^{2}-z^{2}=0 \Rightarrow x^{2}=z^{2} \text { and substituting into } \rightarrow \text { gives } z^{2} y-y z^{2}+z=1 \Rightarrow z=1 \text {. } \\
& -2 y z+1=0 \quad \text { Then from }-2 y z+1=0 \text { we have }-2 y=-1 \Rightarrow y=1 / 2 \text {. }
\end{aligned}
$$

And $x^{2}=z^{2}=1 \Rightarrow x= \pm 1$. Thus, the two points are $\left(\pm 1, \frac{1}{2}, 1\right)$.

