2. Functions of Several Variables
(from Stewart, Calculus, Chapter 14)

Functions of Two Variables: f : D — R, D C R2?. The graph of the

function f(z,y) is the set of all points (x,y,z) € R? such that (z,y) € D s T
and z = f(x,y). The graph of a function of two variables is a surface in R3. ‘l '
Functions of Three Variables: f: D — R, D C R3. The graph of a function )\\l# "
f(x,y, 2) of three variables would lie in R*. For a visual representation, we

often look instead at the level surfaces of f, i.e. the surfaces in R? with

equations f(x,y,z) = k for constants k. Graph of f(z,y) "\{ /
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Continuity: A function f(x,y) is continuous at (a,b) if( %Hn( . f(z,y) = f(a,b).
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Partial Derivatives
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Shortcut for Finding Partial Derivatives
e To find f,, regard y as constant and differentiate f(x,y) with respect to x.
e To find f,, regard = as constant and differentiate f(x,y) with respect to y.
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Ex. 1. Consider the function f(x,y) = { z?+y? %f (2,y) f (0,0)

(a) Show that f is continuous at (0,0).
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So
b) Find f.(0,0) and f,(0,0
(b) Find £(0,0) and £,(0,0). (om0
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Ex. 2. Let f(z,) :{ 2L if (2,9) # (0,0)

0 if (z,y) = (0,0).
(a) Is f continuous at (0,0)? Justify your answer.
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Level Curves and Level Surfaces

»
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Def. The level curves of a function f of two vari-
ables are the curves in the xy-plane with equation
f(z,y) = k for any constant k. Level curves are the
projection onto the xy-plane of traces of the surface
in the planes z = k. (A contour map is a collection of
level curves.)

%

Def. The level surfaces of a function f(x,y,z) are
the surfaces with equations f(x,y,z) = k.

(a) Contour map

(b) Horizontal traces are raised level curves

Directional Derivatives and the Gradient Vector

Directional Derivatives
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Given a unit vector @ = {a, b), the vertical plane through (xo,yo)
in the direction of @ intersects S in a curve C. The slope of the
tangent line to C' at the point (xg,yo) gives the rate of change
of f at (zg,yo) in the direction of the unit vector @. This is
called the directional derivative of f in the direction of @, and is
denoted Dz f(xo,Yo)-

Note that the partial derivatives f, and f, are the directional
derivatives of f in the directions of i and j, respectively.

Thm. If f is a differentiable function then f has a directional
derivative in the direction of any unit vector # and

Dzf=Vf-a

The Gradient Vector

af o

or Vf(x,y,z)=<

\N\‘Fﬂm Dep\mﬁrﬂ‘;l\s

VNTQU*"

Wiredrorgll DevN &0
‘\(\/ BD“

o5 o1 of
8m’8y’82>

Properties of the Gradient: Let 6 be the angle between a unit vector « and V f at a point P.

Daf = Vi i <[ feos(0) )

of increase of f at P.
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The maximum value of the directional derivative Dz f(P) at a point P is||Vf(P)]and it occurs when @
has the same direction as the gradient vector V f(P). So V f(P) points in the direction of maximum rate

2. Vf(z,y) is perpendicular to the level curves of a function f(z,y). Similarly, V f(z,y, z) is perpendicular

to the level surfaces of a function f(z,y, 2).
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Ex. 3. Find the directional derjyative of the function f(z,y,2) = y?e®™* at the point (0,1,—1) in the
direction of the vector (4,2,1)= \| S < ‘1’ 2 |7
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Ex. 4. Let f(x,y) = 222 + 2y?. Find a unit vector that points in the direction of the maximum rate of
increase at the point (1,2). What is the rate of change of f in this direction?
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Ex. 5. The temperature at the point (z,y, 2) is T(,y, 2) = + sin(rzy) + In(2? + 1) + 60.

(a) Let 7 = —i+ 2]+ 2k. What is the rate of change of the temperature at the point (2,—1,1) in the
direction of 7
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(b) Find a vector pointing in the direction in which the temperature increases most rapidly at the point
(2,—-1,1).
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N Ex. 6. A hiker is walking on a mountain path. The surface of the mountain is modeled by f(z,y) =
— 4z — 3y~ e positive z-axis points to the East direction and the positive y-axis points North.
€ 1-422-32 Th iti i i he East directi d th iti i ints North
(a) Suppose the hiker is now at the point P(1/4,—1/2,0) and heading North. Is she ascending or descending?
N - =
A ot yechor (o\t\ﬁrco nort\ V3w < 0 |D'
5 -4) = 72,37
\]'F(*l\j\t <"§6X)“0\Q\7 So V'F(‘i/ 2 <

| v ding -
Dd*‘(*\fl\ = {=2,3).¢o»=3 0. So +th hilr s ascendley

(b) When the hiker is at the point Q(1/4,0,3/4), in which direction should she initially head to descend
most rapidly?
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Tangent Planes

Tangent Planes: The tangent plane to a surface S at a point P = (xg,yo, 20) is the plane containing the
tangent line to any curve C on S passing through P.

Equations of Tangent Planes

If S is the graph of a function, i.e. z = f(x,y) is given explicitly as a function of = and y:

z— f(xo,y0) = fa(@o,y0)(x — x0) + fy(20,y0)(y — Yo)
If S is the graph of a level surface F(x,y,z) = k and VF(xq,yo, 20) # 0:

Fo(x0,y0,20)(x — x0) + Fy(20, Y0, 20) (Y — Yo) + Fz (20, Yo, 20)(2 — 20) = 0.
Rmk. This second equation is just the usual scalar equation of a plane, with 7 = VF. This equation can
be used in the first case as well. 4y "“‘6&"% oty =) —F(\;n@ -2 =0
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Ex. 7. Let f(z,y) = y+sin(z/y). Find an equation of the tangent plane to the graph of z = f(x,y) at the
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Ex. 8. Consider the surface S given by the equation z?y — yz% + z = 1.
(a) Find an equation of the tangent plane to S at the point (11,0, 1).
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(b) Find two points on the surface S where the tangent plane at P is parallel to the yz-plane. X L/
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