2. Functions of Several Variables

(from Stewart, Calculus, Chapter 14)

<u>Functions of Two Variables</u>: $f : D \to \mathbb{R}$, $D \subseteq \mathbb{R}^2$. The graph of the function f(x, y) is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that $(x, y) \in D$ and z = f(x, y). The graph of a function of two variables is a surface in \mathbb{R}^3 .

<u>Functions of Three Variables</u>: $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^3$. The graph of a function f(x, y, z) of three variables would lie in \mathbb{R}^4 . For a visual representation, we often look instead at the <u>level surfaces</u> of f, i.e. the surfaces in \mathbb{R}^3 with equations f(x, y, z) = k for constants k.

Graph of f(x, y)

 $\underline{\text{Continuity:}} \text{ A function } f(x,y) \text{ is } \underline{\text{continuous}} \text{ at } (a,b) \text{ if } \lim_{(x,y) \to (a,b)} f(x,y) = f(a,b).$

Partial Derivatives

$$f_x(x,y) = \frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \qquad \text{and} \qquad f_y = \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Shortcut for Finding Partial Derivatives

- To find f_x , regard y as constant and differentiate f(x, y) with respect to x.
- To find f_y , regard x as constant and differentiate f(x, y) with respect to y.

Ex. 1. Consider the function
$$f(x, y) = \begin{cases} \frac{4x^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

(a) Show that f is continuous at (0,0). This is no longer on the Comps syllabus.

(b) Find $f_x(0,0)$ and $f_y(0,0)$.

Ex. 2. Let $f(x,y) = \begin{cases} \frac{3x^2y^2}{2x^4+y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (a) Is f continuous at (0,0)? Justify your answer. This is no longer on the Comps syllabus.

(b) Find $f_x(0,0)$ and $f_y(0,0)$.

Def. The <u>level curves</u> of a function f of two variables are the curves in the xy-plane with equation f(x, y) = k for any constant k. Level curves are the projection onto the xy-plane of traces of the surface in the planes z = k. (A contour map is a collection of level curves.)

Def. The <u>level surfaces</u> of a function f(x, y, z) are the surfaces with equations f(x, y, z) = k.

Directional Derivatives and the Gradient Vector

Directional Derivatives

Given a unit vector $\vec{u} = \langle a, b \rangle$, the vertical plane through (x_0, y_0) in the direction of \vec{u} intersects S in a curve C. The slope of the tangent line to C at the point (x_0, y_0) gives the rate of change of f at (x_0, y_0) in the direction of the unit vector \vec{u} . This is called the <u>directional derivative</u> of f in the direction of \vec{u} , and is denoted $D_{\vec{u}}f(x_0, y_0)$.

Note that the partial derivatives f_x and f_y are the directional derivatives of f in the directions of \vec{i} and \vec{j} , respectively.

Thm. If f is a differentiable function then f has a directional derivative in the direction of any unit vector \vec{u} and

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

The Gradient Vector

$$abla f(x,y) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle \qquad \text{or} \qquad
abla f(x,y,z) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right
angle$$

Properties of the Gradient: Let θ be the angle between a unit vector \vec{u} and ∇f at a point P.

$$D_{\vec{u}}f = \nabla f \cdot \vec{u} = \|\nabla f\|\cos(\theta)$$

- 1. The maximum value of the directional derivative $D_{\vec{u}}f(P)$ at a point P is $\|\nabla f(P)\|$ and it occurs when \vec{u} has the same direction as the gradient vector $\nabla f(P)$. So $\nabla f(P)$ points in the direction of maximum rate of increase of f at P.
- 2. $\nabla f(x, y)$ is perpendicular to the level curves of a function f(x, y). Similarly, $\nabla f(x, y, z)$ is perpendicular to the level surfaces of a function f(x, y, z).

Ex. 3. Find the directional derivative of the function $f(x, y, z) = y^2 e^{xyz}$ at the point (0, 1, -1) in the direction of the vector $\langle 4, 2, 1 \rangle$.

Ex. 4. Let $f(x,y) = 2x^2 + xy^2$. Find a unit vector that points in the direction of the maximum rate of increase at the point (1,2). What is the rate of change of f in this direction?

Ex. 5. The temperature at the point (x, y, z) is $T(x, y, z) = \frac{1}{\pi} \sin(\pi xy) + \ln(z^2 + 1) + 60$.

(a) Let $\vec{v} = -\vec{i} + 2\vec{j} + 2\vec{k}$. What is the rate of change of the temperature at the point (2, -1, 1) in the direction of \vec{v} ?

(b) Find a vector pointing in the direction in which the temperature increases most rapidly at the point (2, -1, 1).

Ex. 6. A hiker is walking on a mountain path. The surface of the mountain is modeled by $f(x, y) = 1 - 4x^2 - 3y^2$. The positive x-axis points to the East direction and the positive y-axis points North.

(a) Suppose the hiker is now at the point P(1/4, -1/2, 0) and heading North. Is she ascending or descending?

(b) When the hiker is at the point Q(1/4, 0, 3/4), in which direction should she initially head to descend most rapidly?

Tangent Planes

Tangent Planes: The tangent plane to a surface S at a point $P = (x_0, y_0, z_0)$ is the plane containing the tangent line to any curve C on S passing through P.

Equations of Tangent Planes

If S is the graph of a function, i.e. z = f(x, y) is given explicitly as a function of x and y:

$$z - f(x_0, y_0) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

If S is the graph of a level surface F(x, y, z) = k and $\nabla F(x_0, y_0, z_0) \neq 0$:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Rmk. This second equation is just the usual scalar equation of a plane, with $\vec{n} = \nabla F$. This equation can be used in the first case as well.

Ex. 7. Let $f(x, y) = y + \sin(x/y)$. Find an equation of the tangent plane to the graph of z = f(x, y) at the point (0, 3, 3).

Ex. 8. Consider the surface S given by the equation $x^2y - yz^2 + z = 1$. (a) Find an equation of the tangent plane to S at the point (11, 0, 1).

(b) Find two points on the surface S where the tangent plane at P is parallel to the yz-plane.