2. Functions of Several Variables

(from Stewart, Calculus, Chapter 14)

Functions of Two Variables: $f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{2}$. The graph of the function $f(x, y)$ is the set of all points $(x, y, z) \in \mathbb{R}^{3}$ such that $(x, y) \in D$ and $z=f(x, y)$. The graph of a function of two variables is a surface in \mathbb{R}^{3}.

Functions of Three Variables: $f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{3}$. The graph of a function $f(x, y, z)$ of three variables would lie in \mathbb{R}^{4}. For a visual representation, we often look instead at the level surfaces of f, i.e. the surfaces in \mathbb{R}^{3} with equations $f(x, y, z)=k$ for constants k.

Graph of $f(x, y)$

Continuity: A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.

Partial Derivatives

$$
f_{x}(x, y)=\frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \quad \text { and } \quad f_{y}=\frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

Shortcut for Finding Partial Derivatives

- To find f_{x}, regard y as constant and differentiate $f(x, y)$ with respect to x.
- To find f_{y}, regard x as constant and differentiate $f(x, y)$ with respect to y.

Ex. 1. Consider the function $f(x, y)=\left\{\begin{aligned} \frac{4 x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0) .\end{aligned}\right.$
(a) Show that f is continuous at $(0,0)$. This is no longer on the Comps syllabus.
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Ex. 2. Let $f(x, y)=\left\{\begin{aligned} \frac{3 x^{2} y^{2}}{2 x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0) .\end{aligned}\right.$
(a) Is f continuous at $(0,0)$? Justify your answer. This is no longer on the Comps syllabus.
(b) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Level Curves and Level Surfaces

Def. The level curves of a function f of two variables are the curves in the $x y$-plane with equation $f(x, y)=k$ for any constant k. Level curves are the projection onto the $x y$-plane of traces of the surface in the planes $z=k$. (A contour map is a collection of level curves.)

Def. The level surfaces of a function $f(x, y, z)$ are the surfaces with equations $f(x, y, z)=k$.

(a) Contour map

(b) Horizontal traces are raised level curves

Directional Derivatives and the Gradient Vector

Directional Derivatives

Given a unit vector $\vec{u}=\langle a, b\rangle$, the vertical plane through (x_{0}, y_{0}) in the direction of \vec{u} intersects S in a curve C. The slope of the tangent line to C at the point $\left(x_{0}, y_{0}\right)$ gives the rate of change of f at $\left(x_{0}, y_{0}\right)$ in the direction of the unit vector \vec{u}. This is called the directional derivative of f in the direction of \vec{u}, and is denoted $D_{\vec{u}} f\left(x_{0}, y_{0}\right)$.

Note that the partial derivatives f_{x} and f_{y} are the directional derivatives of f in the directions of \vec{i} and \vec{j}, respectively.

Thm. If f is a differentiable function then f has a directional derivative in the direction of any unit vector \vec{u} and

$$
D_{\vec{u}} f=\nabla f \cdot \vec{u}
$$

The Gradient Vector

$$
\nabla f(x, y)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \quad \text { or } \quad \nabla f(x, y, z)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

Properties of the Gradient: Let θ be the angle between a unit vector \vec{u} and ∇f at a point P.

$$
D_{\vec{u}} f=\nabla f \cdot \vec{u}=\|\nabla f\| \cos (\theta)
$$

1. The maximum value of the directional derivative $D_{\vec{u}} f(P)$ at a point P is $\|\nabla f(P)\|$ and it occurs when \vec{u} has the same direction as the gradient vector $\nabla f(P)$. So $\nabla f(P)$ points in the direction of maximum rate of increase of f at P.
2. $\nabla f(x, y)$ is perpendicular to the level curves of a function $f(x, y)$. Similarly, $\nabla f(x, y, z)$ is perpendicular to the level surfaces of a function $f(x, y, z)$.

Ex. 3. Find the directional derivative of the function $f(x, y, z)=y^{2} e^{x y z}$ at the point $(0,1,-1)$ in the direction of the vector $\langle 4,2,1\rangle$.

Ex. 4. Let $f(x, y)=2 x^{2}+x y^{2}$. Find a unit vector that points in the direction of the maximum rate of increase at the point $(1,2)$. What is the rate of change of f in this direction?

Ex. 5. The temperature at the point (x, y, z) is $T(x, y, z)=\frac{1}{\pi} \sin (\pi x y)+\ln \left(z^{2}+1\right)+60$.
(a) Let $\vec{v}=-\vec{i}+2 \vec{j}+2 \vec{k}$. What is the rate of change of the temperature at the point $(2,-1,1)$ in the direction of \vec{v} ?
(b) Find a vector pointing in the direction in which the temperature increases most rapidly at the point $(2,-1,1)$.

Ex. 6. A hiker is walking on a mountain path. The surface of the mountain is modeled by $f(x, y)=$ $1-4 x^{2}-3 y^{2}$. The positive x-axis points to the East direction and the positive y-axis points North.
(a) Suppose the hiker is now at the point $P(1 / 4,-1 / 2,0)$ and heading North. Is she ascending or descending?
(b) When the hiker is at the point $Q(1 / 4,0,3 / 4)$, in which direction should she initially head to descend most rapidly?

Tangent Planes

Tangent Planes: The tangent plane to a surface S at a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ is the plane containing the tangent line to any curve C on S passing through P.

Equations of Tangent Planes
If S is the graph of a function, i.e. $z=f(x, y)$ is given explicitly as a function of x and y :

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

If S is the graph of a level surface $F(x, y, z)=k$ and $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq 0$:

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

Rmk. This second equation is just the usual scalar equation of a plane, with $\vec{n}=\nabla F$. This equation can be used in the first case as well.

Ex. 7. Let $f(x, y)=y+\sin (x / y)$. Find an equation of the tangent plane to the graph of $z=f(x, y)$ at the point $(0,3,3)$.

Ex. 8. Consider the surface S given by the equation $x^{2} y-y z^{2}+z=1$.
(a) Find an equation of the tangent plane to S at the point $(11,0,1)$.
(b) Find two points on the surface S where the tangent plane at P is parallel to the $y z$-plane.

