1. Addendum: More on Basis and Dimension
(This material appears in Section 2 of the Study Guide, but in Chapter 1 of the text.)

Theorems about dimension from Chapter 1
e If X C V is a subspace, then dim(X) < dim(V). Moreover, if dim(V) < oo, then dim(X) = dim(V)
if and only if X = V.
e Let V be a vector space with dim(V) = n, and let S C V be a set of m distinct vectors in V.
— If m < n, then S cannot span V.
— If m > n, then S cannot be linearly independent.

Challenge: Explain how the following “two-out-of-three theorem” follows from the results above.

Two-out-of-three Theorem for Sets: Let V' be a vector space, and let S C V be a set of n distinct vectors in
V. If any two of the following conditions hold, then all three hold (and S is a basis for V).

(1) S is linearly independent. = . oy of = dim(V)=n

(2) S spans V. [ s*L Sisa \b“\J \J dimm )

(3) dim(V) =n.
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Ex. 1. Let V be a vector space. Is the set {z,1+ 2, —1 — 22 + 22} a basis of P»(R)? Justify your answer.
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2. Linear Transformations
(References: Comps Study Guide for Linear Algebra Section 2;
Damiano & Little, A Course in Linear Algebra, Chapter 2)

Linear Transformations: Let V and W be vector spaces and T : V' — W. Write down the condition(s) that

T must satisfy in order to be linear.
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Ex. 2. Let T be a linear transformation from R? to R2. Suppose that T(1,2) = (3,4) and T'(2,3) = (1,1).
Find T'(z,y) for (z,y) € R2. — I
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Ex. 3. Let T : V — W be a linear transformation between vector spaces V and W. Prove that T(0y ) = Oy .
(Note: This is a very commonly used result, which you should remember.)
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Kernel (Nullspace): Let T : V — W be a linear transformation. Write down a definition of the kernel of T'.
kee ()= EveN | TOY= 0wl

Nullity: The dimension of the kernel of T, dim(ker(T")), is called the nullity of 7.

Image (Range): Let T : V — W be a linear transformation. Write down a definition of the image of T'.
\m(T\= Z“ é\{\f \ \]:’T(\l) {or Some VGVS

Rank: The dimension of the image of T, dim(Im(T")), is called the rank of T

Matrices: Let A € M« (R) be an m x n matrix. Then T : R™ — R™ defined by T(z) = Ax is linear. In
this case, the image of T' is the span of the columns of A, and so is called the column space of A.
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Ex. 4. Let A= {3 3 3 3 3].
5 5 7 7 7
(a) Find a basis for the column space of A.
(b) Find a basis for the null space (or kernel) of A.
(¢) Find the general solution of the equation A% = 0.
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One-to-one: Let T : V — W. Write down what it means to say that T is one-to-one (injective).
H: T(\h\ ‘T(\l?.\ foc e \lll\‘le\l) +\'\R«“\ \Il:\!l-

Onto: Let T: V — W. Write down what it means to say that T is onto (surjective). ovr ( \ \'JB
= mT)=
For g\l wEW ; Thee odiss o yEN sudn that TO)=W. \

Isomorphism: A linear transformation that is both one-to-one and onto is called an isomorphism.

Ex. 5. Let V and W be vector spaces and let T be a linear transformation from V to W. Prove that

T is one-to-one if and only if ker(7T) = {0y }. (Note: This is a commonly used result, which you should

remember.)
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Ex. 6. Let T : V — V be a linear transformation on a finite dimensional vector space V. Suppose that T is
one-to-one. Prove that if {vq,va,...v,} is a basis for V then {T'(v1),T (vs),...T(v,)} is also a basis for V.
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Ex. 7. Let V be a vector space and S = {v1,v2} be a subset of V. Define T : R> — V by
T(z1,22) = 22101 + 3T202.

(a) Prove that T is linear.
(b) Prove that if S is linearly independent then T is one-to-one.

(¢) Prove that if Span(S) =V then T is onto.
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One-to-one, Onto, and Dimension: Let T : V' — W be linear. \

e T is one-to-one if and only if nullity(7") = 0. (E)" S
o If dim(W) < oo, T is onto if and only if rank(7") = dim(W).

Rank-Nullity Theorem (Dimension Theorem): rank(T") + nullity(7") = dim(V)

Challenge: Explain how the following “two-out-of-three theorem” follows from the Rank-Nullity Theorem
and the two results above.

Two-out-of-three Theorem for Linear Transformations: Let 7" : V. — W be a linear transformation, and
suppose that at least one of V, W is finite-dimensional. If any two of the following conditions hold, then all )
three hold (and so T is an isomorphism). Au (T\= _ - = din N
=0, rank (M 2dim(W) = dim(W) + 0 = A\
(1) T is one-to-one. | ¥2 = WY \ 0 ran 1=din \
(2) T is onto.
(3) dim(V) = dim(W).
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Ex. 8. Let A be a 4 x 6 matrix with real coefficients. # 1 l - )
(a) Can the columns of A be linearly independent? Qv ' '
(b) Prove that the nullity of A is at least 2. ®3\ S b ‘ N
(¢) Does the equation AZ = 0 have a unique solution? LA A o
(d) Assume that the nullity of A is exactly 2. What does this imply about the rank of A?
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Ex. 9. Suppose that T : R™ — R" is a linear map such that [|T(x)|| = ||x|| for all x € R™. Prove that T is
an isomorphism.
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Ex. 10. Let P, = {a+ bt +ct? : a,b,c € R} and T : P, — R? be defined by T'(p) = [5(1)}

(a) Prove that T is linear.

(b) Find a basis for the kernel (or null space) of T.
(¢) Find the rank and nullity of 7.

(d) Is T one-to-one? Is T onto? Justify your answers.
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Additional Problems

Ex. 11. Let V be a vector space. Suppose that {u,v,w} is a basis of V. Is the set {u+ 2v,v + 2w, u + 2w}
also a basis of V7 Justify your answer. \|se 4w greatc 91 Ko )

Ex. 12. Let V7 and V5 be vector spaces and let T : V; — V5 be a linear transformation. For Wy C V5, let
Wi ={v € Vi :T(v) € Wa}. Show that if Wy is a subspace of V5 then W is a subspace of Vi. Gwlar 4o EXo 3L,

Ex. 13. Let T : V — W be a linear transformation between vector spaces V and W. Prove the following.
(a) The kernel of T'is a subspace of V. 5@  frop 2 IL da ed fec a ((0"('

(b) The image of T is a subspace of W. N 2.3 ] K
1 -1 1 3

Ex. 14. Let A= |-1 1 0 —2|. Find bases for the column space and null space of A. SimW\av Yo Ta ‘1
2 =2 4 11

Ex. 15. Let T : R?® — P,(R) be defined by T'(ay,as,a3) = (a1 — az) + azx + (a1 + az)z?. Prove that T is
an isomorphism. Mok © Ao (”LG\: al‘m("z\ So 0ald NRd Yo $Waw I

Ex. 16. Let V and W be vector spaces and let T" be a linear transformation from V to W. Sup-
pose that T is one-to-one and {vy,va,...v,} is a set of n linearly independent vectors in V. Prove that

{T(v1),T(v2),...T(vn)} is linearly independent in W. g ml\er 4o T b

Ex. 17. Let V and W be vector spaces and T : V — W be a linear transformation. Suppose that
{T(v1),T(va),...T(vy,)} is linearly independent. £ oS s‘l do)
(a) Prove that {v1,vs,...v,} is linearly independent. S¥ert W KV ted GnNa =0 wd File T o

(b) Suppose in addition that Span({vy, v, ...v,}) = V. Prove that T is one-to-one. LA X= °~|Vl+ «wFayNa € LT

o Show  AZD:
Ex. 18. Let V and W be vector spaces and T : V' — W be a linear transformation. For ¢ € R with ¢ # 0,

define a map S : V. — W by S(v) = ¢T'(v). Prove that if T' is onto then S is onto as well. L ¢% \-g‘}l wd VAV st TO)
eV )=

T W .
Ex. 19. Let V = Msy2(R) be the vector space of 2 x 2 matrices with real coefficients and = P(R)
be the vector space of polynomials of degree less than or equal to 2. Suppose that T : V — W is a linear
transform‘fltion. . A\“\ (\‘\: 2212Y dim (\,.\\: 3 q - wi)? ik (T)
(a) Explain what is meant by the kernel, or null space, of T'. Mah= 3

(b) What are the possible values of the nullity, or the dimension of the kernel, of T'? Justify your answer. |52 13,07 Li

(¢) Can T be one-to-one? Can T be onto?
no Qe
Ex. 20. Let T : V. — W be an isomorphism between finite dimensional vector spaces V and W. Let U be

a subspace of V and let T(U) = {T'(u) : uw € U}. Prove that dim(U) = dim(7'(U)).
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