3. Matrices

(References: Comps Study Guide for Linear Algebra Section 3; Damiano & Little, A Course in Linear Algebra, Chapters 2 and 3)

<u>Coordinate Vectors</u>: Let V be a vector space and $\alpha = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis for V. Then for any $\vec{v} \in V$, there are unique coefficients $a_1, \dots, a_n \in \mathbb{R}$ such that

$$\vec{v} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n.$$

In this notation, the coordinate vector of \vec{v} with respect to α is $[\vec{v}]_{\alpha} =$

Matrix of a Linear Transformation: Let $T: V \to W$ be a linear transformation and let $\alpha = \{\vec{v}_1, \dots, \vec{v}_n\}$ and $\beta = \{\vec{w}_1, \dots, \vec{w}_n\}$ be bases for V and W, respectively. Then the matrix of T with respect to α and β , denoted $[T]_{\alpha}^{\beta}$, is the matrix whose ith column is $[T(\vec{v}_i)]_{\beta}$, the coordinate vector of $T(\vec{v}_i)$ with respect to β .

Ex. 1. Let $M_{2\times 2}(\mathbb{R})$ be the vector space of 2×2 matrices with real coefficients and let $\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be its standard basis. Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ by $T(A) = A^t$ where A^t is the transpose of the matrix A. Compute the matrix of T with respect to the basis α .

Theorem: Let $T: V \to W$ be a linear transformation between finite-dimensional vector spaces V and W. If $A = [T]^{\beta}_{\alpha}$ where α and β are any bases of V and W, respectively, then

- (1) T is one-to-one if and only if nullity(A) = 0.
- (2) T is onto if and only if the rank $(A) = \dim(W)$.

Ex. 2. Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the transpose map from Ex. 1. Is T one-to one? Is T onto?

Using the Matrix of T to find $T(\vec{v})$: Let $T: V \to W$ and α and β be bases of the vector spaces V and W, respectively. For a vector $\vec{v} \in V$, write down the equation that relates the coordinate vector of $T(\vec{v})$ to the coordinate vector of \vec{v} and the matrix of T.

Matrix of a Composition: Let $T:V\to W$ and $S:W\to X$ be linear transformations and let α,β,γ be bases of the vector spaces V,W, and X, respectively. Write down the equation that relates the matrix of the composition ST to the matrices of S and T.

Ex. 3. Let $V = \mathbb{R}^4$ and $W = P_2(\mathbb{R})$ be the vector space of polynomials with real coefficients and degree at most 2. Let $\alpha = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\}$ be the standard basis of \mathbb{R}^4 and let $\beta = \{1, x+1, x^2+x+1\}$. It is a fact, which you may assume, that β is a basis for W. Suppose that $T: V \to W$ is a linear transformation and

the matrix of T with respect to α and β is $[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 0 & 0 & -1 \\ 0 & 2 & -3 & 1 \end{bmatrix}$. Find T(0, 2, -1, 3).

<u>Invertible Matrices</u>: Explain what it means for an $n \times n$ matrix A to be invertible. (Note: Only square matrices can be invertible.)

<u>Theorem</u>: Let A be an $n \times n$ matrix. The following are equivalent:

- (1) A is invertible.
- (2) The columns of A are linearly independent.
- (3) The rows of A span \mathbb{R}^n .
- (4) The columnspace (i.e., range or image) of A is \mathbb{R}^n .
- (5) The nullspace (i.e., kernel) of A is $\{0\}$.
- (6) $\operatorname{rank}(A) = n$.
- (7) $\operatorname{nullity}(A) = 0.$
- (8) $\det(A) \neq 0$.
- (9) $\lambda = 0$ is not an eigenvalue of A.

Ex. 4. Consider the matrix
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 2 & 4 \end{pmatrix}$$
.

- (a) Compute det(A).
- (b) Is A invertible? If so, compute the inverse of A.

Invertible Maps: Let $T: V \to W$ be a linear transformation. Explain what it means for T to be invertible.

Theorem: A map T is invertible if and only if T is one-to-one and onto.

<u>Theorem</u>: Let $T: V \to W$ be a linear transformation between finite-dimensional vector spaces. If $A = [T]^{\beta}_{\alpha}$ where α and β are any bases of V and W, respectively, then T is invertible if and only if A is invertible.

Ex. 5. Let $T: V \to V$ be a linear transformation and let $\alpha = \{\vec{v}_1, \vec{v}_2\}$ be a basis for the vector space V. Suppose that the matrix of T with respect to α is $[T]_{\alpha}^{\alpha} = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$.

- (a) Explain how you know that T is invertible.
- (b) Calculate $T^{-1}(\vec{v_1})$. Write your answer as a linear combination of the vectors $\vec{v_1}$ and $\vec{v_2}$.

Change of Basis: Recall that the identity map $I:V\to V$ satisfies $I(\vec{v})=\vec{v}$ for all $\vec{v}\in V$. Let α and β both be bases of V. In this case, the matrix $[I]^{\beta}_{\alpha}$ is called the change of basis matrix from α to β .

Inverse of a Change of Basis Matrix: Since the identity map is invertible, so is any change of basis matrix. What is $([I]^{\beta}_{\alpha})^{-1}$?

Changing Coordinates for the Matrix of a Transformation: Suppose that $T:V\to W$, α and α' are bases for V and β and β' are bases for W. Given $[T]^{\beta}_{\alpha}$, write down expressions for $[T]^{\beta'}_{\alpha}$, $[T]^{\beta'}_{\alpha'}$, and $[T]^{\beta'}_{\alpha'}$.

Ex. 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 \end{pmatrix}$ and $T \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$.

- (a) Find the matrix of T with respect to the standard basis of \mathbb{R}^2 .
- (b) Is T one-to-one? Is T onto? Justify your answers.

Additional Problems

Ex. 7. Let $P_n(\mathbb{R})$ be the vector space of polynomials with real coefficients of degree at most n. Define $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ by $T(f) = \int_0^x f(t) dt$.

- (a) Compute the matrix of T with respect to the standard bases $\{1, x, x^2\}$ of $P_2(\mathbb{R})$ and $\{1, x, x^2, x^3\}$ of $P_3(\mathbb{R})$.
- (b) Is T one-to one? Is T onto?
- (c) Find bases for ker(T) and Im(T).

Ex. 8. Let $M_{2\times 2}(\mathbb{R})$ be the vector space of 2×2 matrices with real coefficients and let

$$\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ be its standard basis.}$$

- (a) Let $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ by T(A) = a + b + c + d where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Compute the matrix of T with respect to the bases α for $M_{2\times 2}(\mathbb{R})$ and $\beta = \{1\}$ for \mathbb{R} .
- (b) Find a basis for ker(T).
- (c) Is T one-to one? Is T onto?

Ex. 9. Let $T: \mathbb{R}^5 \to \mathbb{R}^3$ be the linear transformation with matrix representation $[T]_{std}^{std} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 \\ 5 & 5 & 7 & 7 \end{bmatrix}$

with respect to the standard bases on \mathbb{R}^5 and \mathbb{R}^3 . Find a basis for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.

Ex. 10. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (2x+y-4z,4y-5z,-z). Determine whether or not T is invertible, and if so, find a formula for $T^{-1}(x,y,z)$.

Ex. 11. Let A and B be invertible $n \times n$ matrices. Show that AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. (Note: This is a common result that you could usually use without proof.)

Ex. 12. Let $\alpha = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ and $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ be bases for a vector space V. Suppose that

$$\vec{v}_1 = \vec{w}_1 - 2\vec{w}_2 - 2\vec{w}_3$$

 $\vec{v}_2 = -\vec{w}_2 - \vec{w}_3$
 $\vec{v}_3 = 2\vec{w}_2 - \vec{w}_3$.

Compute the change of basis matrix from β to α .

Ex. 13. Let P_2 be the vector space of polynomials with real coefficients of degree at most 2, and let $\alpha = \{1, x+1, x^2+x+1\}$. It is a fact, which you may assume, that α is a basis for V. Suppose that

 $T:V\to V$ is a linear transformation and the matrix of T relative to α is $[T]^{\alpha}_{\alpha}=\begin{bmatrix}1&2&3\\3&0&-1\\2&5&1\end{bmatrix}$. Find $T(3x^2+x+2)$.

Ex. 14. Let $P_2 = \{a + bt + ct^2 : a, b, c \in \mathbb{R}\}$ and $T : P_2 \to \mathbb{R}^2$ be defined by $T(p) = \begin{bmatrix} p(1) \\ p'(1) \end{bmatrix}$. You may assume that T is linear.

- (a) Find the matrix representation of T with respect to the bases $\{1, t, t^2\}$ and $\left\{\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}-1\\1\end{bmatrix}\right\}$.
- (b) Find the rank and nullity of T.
- (c) Find bases of the kernel and image of T.