3. Matrices

(References: Comps Study Guide for Linear Algebra Section 3; Damiano \& Little, A Course in Linear Algebra, Chapters 2 and 3)

Coordinate Vectors: Let V be a vector space and $\alpha=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for V. Then for any $\vec{v} \in V$, there are unique coefficients $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n} .
$$

In this notation, the coordinate vector of \vec{v} with respect to α is $[\vec{v}]_{\alpha}=$

Matrix of a Linear Transformation: Let $T: V \rightarrow W$ be a linear transformation and let $\alpha=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $\beta=\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ be bases for V and W, respectively. Then the matrix of T with respect to α and β, denoted $[T]_{\alpha}^{\beta}$, is the matrix whose i th column is $\left[T\left(\vec{v}_{i}\right)\right]_{\beta}$, the coordinate vector of $T\left(\vec{v}_{i}\right)$ with respect to β.

Ex. 1. Let $M_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 matrices with real coefficients and let $\alpha=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be its standard basis. Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by $T(A)=$ A^{t} where A^{t} is the transpose of the matrix A. Compute the matrix of T with respect to the basis α.

Theorem: Let $T: V \rightarrow W$ be a linear transformation between finite-dimensional vector spaces V and W. If $A=[T]_{\alpha}^{\beta}$ where α and β are any bases of V and W, respectively, then
(1) T is one-to-one if and only if nullity $(A)=0$.
(2) T is onto if and only if the $\operatorname{rank}(A)=\operatorname{dim}(W)$.

Ex. 2. Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be the transpose map from Ex. 1. Is T one-to one? Is T onto?

Using the Matrix of T to find $T(\vec{v})$: Let $T: V \rightarrow W$ and α and β be bases of the vector spaces V and W, respectively. For a vector $\vec{v} \in V$, write down the equation that relates the coordinate vector of $T(\vec{v})$ to the coordinate vector of \vec{v} and the matrix of T.

Matrix of a Composition: Let $T: V \rightarrow W$ and $S: W \rightarrow X$ be linear transformations and let α, β, γ be bases of the vector spaces V, W, and X, respectively. Write down the equation that relates the matrix of the composition $S T$ to the matrices of S and T.

Ex. 3. Let $V=\mathbb{R}^{4}$ and $W=P_{2}(\mathbb{R})$ be the vector space of polynomials with real coefficients and degree at most 2. Let $\alpha=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}, \vec{e}_{4}\right\}$ be the standard basis of \mathbb{R}^{4} and let $\beta=\left\{1, x+1, x^{2}+x+1\right\}$. It is a fact, which you may assume, that β is a basis for W. Suppose that $T: V \rightarrow W$ is a linear transformation and the matrix of T with respect to α and β is $[T]_{\alpha}^{\beta}=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 0 & 0 & -1 \\ 0 & 2 & -3 & 1\end{array}\right]$. Find $T(0,2,-1,3)$.

Invertible Matrices: Explain what it means for an $n \times n$ matrix A to be invertible. (Note: Only square matrices can be invertible.)

Theorem: Let A be an $n \times n$ matrix. The following are equivalent:
(1) A is invertible.
(2) The columns of A are linearly independent.
(3) The rows of A span \mathbb{R}^{n}.
(4) The columnspace (i.e., range or image) of A is \mathbb{R}^{n}.
(5) The nullspace (i.e., kernel) of A is $\{0\}$.
(6) $\operatorname{rank}(A)=n$.
(7) nullity $(A)=0$.
(8) $\operatorname{det}(A) \neq 0$.
(9) $\lambda=0$ is not an eigenvalue of A.

Ex. 4. Consider the matrix $A=\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 2 & 4\end{array}\right)$.
(a) Compute $\operatorname{det}(A)$.
(b) Is A invertible? If so, compute the inverse of A.

Invertible Maps: Let $T: V \rightarrow W$ be a linear transformation. Explain what it means for T to be invertible.

Theorem: A map T is invertible if and only if T is one-to-one and onto.
Theorem: Let $T: V \rightarrow W$ be a linear transformation between finite-dimensional vector spaces. If $A=[T]_{\alpha}^{\beta}$ where α and β are any bases of V and W, respectively, then T is invertible if and only if A is invertible.

Ex. 5. Let $T: V \rightarrow V$ be a linear transformation and let $\alpha=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a basis for the vector space V. Suppose that the matrix of T with respect to α is $[T]_{\alpha}^{\alpha}=\left(\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right)$.
(a) Explain how you know that T is invertible.
(b) Calculate $T^{-1}\left(\vec{v}_{1}\right)$. Write your answer as a linear combination of the vectors \vec{v}_{1} and \vec{v}_{2}.

Change of Basis: Recall that the identity map $I: V \rightarrow V$ satisfies $I(\vec{v})=\vec{v}$ for all $\vec{v} \in V$. Let α and β both be bases of V. In this case, the matrix $[I]_{\alpha}^{\beta}$ is called the change of basis matrix from α to β.

Inverse of a Change of Basis Matrix: Since the identity map is invertible, so is any change of basis matrix. What is $\left([I]_{\alpha}^{\beta}\right)^{-1}$?

Changing Coordinates for the Matrix of a Transformation: Suppose that $T: V \rightarrow W, \alpha$ and α^{\prime} are bases for V and β and β^{\prime} are bases for W. Given $[T]_{\alpha}^{\beta}$, write down expressions for $[T]_{\alpha}^{\beta^{\prime}},[T]_{\alpha^{\prime}}^{\beta}$, and $[T]_{\alpha^{\prime}}^{\beta^{\prime}}$.

Ex. 6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\binom{1}{1}=\binom{8}{-1}$ and $T\binom{1}{-1}=\binom{-2}{3}$.
(a) Find the matrix of T with respect to the standard basis of \mathbb{R}^{2}.
(b) Is T one-to-one? Is T onto? Justify your answers.

Additional Problems

Ex. 7. Let $P_{n}(\mathbb{R})$ be the vector space of polynomials with real coefficients of degree at most n. Define $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ by $T(f)=\int_{0}^{x} f(t) d t$.
(a) Compute the matrix of T with respect to the standard bases $\left\{1, x, x^{2}\right\}$ of $P_{2}(\mathbb{R})$ and $\left\{1, x, x^{2}, x^{3}\right\}$ of $P_{3}(\mathbb{R})$.
(b) Is T one-to one? Is T onto?
(c) Find bases for $\operatorname{ker}(T)$ and $\operatorname{Im}(T)$.

Ex. 8. Let $M_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 matrices with real coefficients and let $\alpha=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be its standard basis.
(a) Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}$ by $T(A)=a+b+c+d$ where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Compute the matrix of T with respect to the bases α for $M_{2 \times 2}(\mathbb{R})$ and $\beta=\{1\}$ for \mathbb{R}.
(b) Find a basis for $\operatorname{ker}(T)$.
(c) Is T one-to one? Is T onto?

Ex. 9. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be the linear transformation with matrix representation $[T]_{s t d}^{s t d}=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 5 & 5 & 7 & 7 & 7\end{array}\right]$ with respect to the standard bases on \mathbb{R}^{5} and \mathbb{R}^{3}. Find a basis for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.
Ex. 10. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(2 x+y-4 z, 4 y-5 z,-z)$. Determine whether or not T is invertible, and if so, find a formula for $T^{-1}(x, y, z)$.
Ex. 11. Let A and B be invertible $n \times n$ matrices. Show that $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$. (Note: This is a common result that you could usually use without proof.)
Ex. 12. Let $\alpha=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ and $\beta=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ be bases for a vector space V. Suppose that

$$
\begin{aligned}
& \vec{v}_{1}=\vec{w}_{1}-2 \vec{w}_{2}-2 \vec{w}_{3} \\
& \vec{v}_{2}=-\vec{w}_{2}-\vec{w}_{3} \\
& \vec{v}_{3}=2 \vec{w}_{2}-\vec{w}_{3} .
\end{aligned}
$$

Compute the change of basis matrix from β to α.
Ex. 13. Let P_{2} be the vector space of polynomials with real coefficients of degree at most 2 , and let $\alpha=\left\{1, x+1, x^{2}+x+1\right\}$. It is a fact, which you may assume, that α is a basis for V. Suppose that $T: V \rightarrow V$ is a linear transformation and the matrix of T relative to α is $[T]_{\alpha}^{\alpha}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 0 & -1 \\ 2 & 5 & 1\end{array}\right]$. Find $T\left(3 x^{2}+x+2\right)$.
Ex. 14. Let $P_{2}=\left\{a+b t+c t^{2}: a, b, c \in \mathbb{R}\right\}$ and $T: P_{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(p)=\left[\begin{array}{c}p(1) \\ p^{\prime}(1)\end{array}\right]$. You may assume that T is linear.
(a) Find the matrix representation of T with respect to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
(b) Find the rank and nullity of T.
(c) Find bases of the kernel and image of T.

