4. Double Integrals

(from Stewart, Calculus, Chapter 15)
Partial Integrals: $\quad \int_{c}^{d} f(x, y) d y$ is calculated by holding x constant and integrating with respect to y from $y=c$ to $y=d$.

Note that the result is a function of x.
For each fixed x, the trace of $f(x, y)$ is a curve C in the plane $x=$ constant. The partial integral $A(x)=\int_{c}^{d} f(x, y) d y$ is the
 area under the curve C from $y=c$ to $y=d$.

Similarly, $\int_{a}^{b} f(x, y) d x$ is calculated by holding y constant and integrating with respect to x from $x=a$ to $x=b$. The result is a function of y.

Finding Volume with a Double Integral:

$\iint f(x, y) d A$ is the signed volume between the surface $z=f(x, y)$ and the region D in the $x y$-plane.

Iterated Integrals

Vertically Simple Regions:

$$
D=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

$$
\iint_{D} f(x, y) d A=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right) d x
$$

Horizontally Simple Regions:

$$
\begin{gathered}
D=\left\{(x, y): c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\} \\
\iint_{D} f(x, y) d A=\int_{c}^{d}\left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right) d y \\
d \mathbf{X}
\end{gathered}
$$

Ex. 1. Find the volume of the solid that lies under the surface $z=x y$ and above the region D in the
$x y$-plane bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6 . \Rightarrow \mathrm{X}^{\mathrm{X}=\mathrm{y}+1} \Rightarrow \frac{1}{2} \mathrm{y}^{2}-3$

$$
V=\iint_{D} x y d A
$$

Intersection

$$
\begin{aligned}
& y+1=\frac{1}{2} y^{2}-3 \\
& y^{2}-2 y-8=0 \\
& (y-4)(y+2)=0 \\
& y=4, \quad y=-2 \\
& x=5 \quad x=-1
\end{aligned}
$$

$$
\begin{aligned}
x & \iint_{D} x y d A=\int_{-2}^{4}\left(\int_{\frac{1}{2} y^{2}-3}^{y+1} x y d x\right) d y \\
= & \left.\int_{-2}^{4} \frac{1}{2} x^{2} y\right|_{x=\frac{1}{2} y^{2}-3} ^{x=y+1} d y \\
= & \int_{-2}^{4} \frac{1}{2}\left[(y+1)^{2} y-\left(\frac{1}{2} y^{2}-3\right)^{2} y\right] d y \\
= & \cdots=36
\end{aligned}
$$

We cant compute $\int \sin \left(y^{2}\right) d y$ so we try changing the order of int

Draw the Region

Ex. 3. Reverse the order of integration in the integral $\int_{4}^{9}\left(\int_{2 \pi x}^{\sqrt{y}=x} f(x, y) d x\right) d y$.
Draw the Region

$$
=\int_{2}^{3}\left(\int_{x^{2}}^{9} f(x, y) d y\right) d x
$$

Ex. 4. Evaluate $\iint_{D}(x+2 y) d A$, where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.
Intersection

$$
\begin{aligned}
& 2 x^{2}=1+x^{2} \\
& x^{2}=1 \Rightarrow x= \pm 1, y=2
\end{aligned}
$$

Draw the Region

$$
\begin{aligned}
\iint_{D}(x+2 y) d A & =\int_{-1}^{1} \int_{2 x^{2}}^{x^{2}+1}(x+2 y) d y d x \\
& =\left.\int_{-1}^{1}\left(x y+y^{2}\right)\right|_{y=2 x^{2}} ^{y=x^{2}+1} d x \\
& =\int_{-1}^{1}\left[x\left(x^{2}+1\right)+\left(x^{2}+1\right)^{2}-2 x^{3}-\left(2 x^{2}\right)^{2}\right] d x \\
& =\int_{-1}^{1}\left(x^{3}+x+x^{4}+2 x^{2}+1-2 x^{3}-4 x^{4}\right) d x \\
& =\int_{-1}^{1}\left(-3 x^{4}-x^{3}+2 x^{2}+x+1\right) d x \\
& =-\frac{3}{5} x^{5}-\frac{x^{4}}{4}+\frac{2}{3} x^{3}+\frac{x^{2}}{2}+\left.x\right|_{-1} ^{1} \\
& =-\frac{3}{5}+\frac{-3}{5}+\frac{2}{3}+\frac{2}{3}+1+1 \\
& =-\frac{6}{5}+\frac{4}{3}+2=\frac{32}{15}
\end{aligned}
$$

Polar Coordinates (r, θ)

r is the signed distance from the origin
θ is the angle measured counter-clockwise from the positive x-axis

Double Integrals in Polar Coordinates:

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Ex. 5. Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) d A$ where R is the region in the upper half plane $x \geq 0$ bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Draw the Region

Trig Identity

$$
\sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2}
$$

$$
\begin{aligned}
\iint_{R}(3 x & \left.+4 y^{2}\right) d A=\int_{0}^{\pi} \int_{1}^{2}\left[3 r \cos \theta+4(r \sin \theta)^{2}\right] r d r d \theta \\
& =\int_{0}^{\pi} \int_{1}^{2}\left[3 r^{2} \cos \theta+4 r^{3} \sin ^{2} \theta\right] d r d \theta \\
& =\int_{0}^{\pi} r^{3} \cos \theta+\left.r^{4} \sin ^{2} \theta\right|_{r=1} ^{r=2} d \theta \\
& =\int_{0}^{\pi} 7 \cos \theta+15 \sin ^{2} \theta d \theta \\
& =\int_{0}^{\pi} 7 \cos \theta+15\left(\frac{1-\cos (2 \theta)}{2}\right) d \theta \\
& =\frac{7 \sin \theta}{2}+\frac{15}{2} \theta-\left.15 \frac{\sin (2 \theta)}{4}\right|_{b} ^{\pi} \\
& =\frac{15}{2} \pi
\end{aligned}
$$

Ex. 6. Evaluate the integral $\int_{-1}^{0}\left(\int_{0}^{\sqrt{1-x^{2}}}=y \cos \left(x^{2}+y^{2}\right) d y\right) d x$.
Draw the Region

$$
\begin{aligned}
y=\sqrt{1-x^{2}} \Rightarrow y^{2} & =1-x^{2}, y \geqslant 0 \\
x^{2}+y^{2} & =1 \\
\begin{aligned}
0 & \int_{0}^{1-x^{2}} \cos \left(x^{2}+y^{2}\right) d y d x
\end{aligned} & =\int_{\pi / 2}^{\pi} \int_{0}^{1} \cos \left(r^{2}\right) r d r d \theta \\
& =\left.\int_{\pi / 2}^{\pi} \frac{1}{2} \sin \left(r^{2}\right)\right|_{0} ^{1} d \theta \\
& =\frac{\pi}{4} \sin (1)
\end{aligned}
$$

Ex. 7. Find the volume of the region bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=8-x^{2}-y^{2}$.

$$
z=-\left(x^{2}+y^{2}\right)+8
$$

Intersection

$$
x^{2}+y^{2}=8-x^{2}-y^{2}
$$

$$
x^{2}+y^{2}=4
$$

$\frac{\text { Region of Integration }}{y}$

$$
\begin{aligned}
\text { Volume } & =\iint_{D}\left(8-x^{2}-y^{2}\right)-\left(x^{2}+y^{2}\right) d A \\
& =\iint_{D} 8-2\left(x^{2}+y^{2}\right) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(8-2 r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} 4 r^{2}-\left.\frac{2}{4} r^{4}\right|_{0} ^{2} d \theta=(16-8) 2 \pi=16 \pi
\end{aligned}
$$

Ex. 8. Evaluate the integrals.

(b) $\iint_{D} e^{x^{2}} d A$ where D is the region bounded by the lines $y=2 x, y=0$, and $x=1$.

Draw the Region

$$
\begin{aligned}
\iint_{D} e^{x^{2}} d A & =\int_{0}^{1} \int_{0}^{2 x} e^{x^{2}} d y d x \\
& =\left.\int_{0}^{1} y\right|_{0} ^{2 x} e^{x^{2}} d x \\
& =\int_{0}^{1} 2 x e^{x^{2}} d x \\
& =\left.e^{x^{2}}\right|_{0} ^{1}=e-1
\end{aligned}
$$

(c) $\iint_{D} e^{x^{2}+y^{2}} d A$ where D is the top half of the disk centered at the origin of radius 3.

$$
\begin{aligned}
\iint_{D} e^{x^{2}+y^{2}} d A & =\int_{0}^{\pi} \int_{0}^{3} e^{r^{2}} r d r d \theta \\
& =\left.\int_{0}^{\pi} \frac{1}{2} e^{r^{2}}\right|_{0} ^{3} d \theta \\
& =\frac{\pi}{2}\left(e^{9}-1\right)
\end{aligned}
$$

