4. Double Integrals

(from Stewart, Calculus, Chapter 15)
Partial Integrals: $\quad \int_{c}^{d} f(x, y) d y$ is calculated by holding x constant and integrating with respect to y from $y=c$ to $y=d$.

Note that the result is a function of x.
For each fixed x, the trace of $f(x, y)$ is a curve C in the plane $x=$ constant. The partial integral $A(x)=\int_{c}^{d} f(x, y) d y$ is the
 area under the curve C from $y=c$ to $y=d$.

Similarly, $\int_{a}^{b} f(x, y) d x$ is calculated by holding y constant and integrating with respect to x from $x=a$ to $x=b$. The result is a function of y.

Finding Volume with a Double Integral:

$\iint_{D} f(x, y) d A$ is the signed volume between the surface $z=f(x, y)$ and the region D in the $x y$-plane.

Finding Area with a Double Integral:
$\operatorname{Area}(D)=\iint_{D} 1 d A$

FIGURE 19
Cylinder with base D and height 1

Iterated Integrals

Vertically Simple Regions:
$D=\left\{(x, y): a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$
$\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$

Horizontally Simple Regions:

$$
\begin{gathered}
D=\left\{(x, y): c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\} \\
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
\end{gathered}
$$

Ex. 1. Evaluate $\iint_{D} x y d A$ where D is the region bounded by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

Ex. 2. Evaluate $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) d y d x$.

Ex. 3. Reverse the order of integration in the integral $\int_{4}^{9} \int_{2}^{\sqrt{y}} f(x, y) d x d y$.

Ex. 4. Evaluate $\iint_{D}(x+2 y) d A$, where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.
$\underline{\text { Polar Coordinates }}(r, \theta)$

r is the signed distance from the origin
θ is the angle measured counter-clockwise from the positive x-axis

$$
\begin{gathered}
x=r \cos (\theta) \quad y=r \sin (\theta) \\
r^{2}=x^{2}+y^{2} \\
\tan (\theta)=\frac{y}{x}
\end{gathered}
$$

Double Integrals in Polar Coordinates:

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Ex. 5. Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) d A$ where R is the region in the upper half plane $y \geq 0$ bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Ex. 6. Evaluate the integral $\int_{-1}^{0} \int_{0}^{\sqrt{1-x^{2}}} \cos \left(x^{2}+y^{2}\right) d y d x$.

Ex. 7. Find the volume of the region bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=8-x^{2}-y^{2}$.

Ex. 8. Evaluate the integrals.
(a) $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x$
(b) $\iint_{D} e^{x^{2}} d A$ where D is the region bounded by the lines $y=2 x, y=0$, and $x=1$.
(c) $\iint_{D} e^{x^{2}+y^{2}} d A$ where D is the top half of the disk centered at the origin of radius 3 .

