4. Eigenvalues and Eigenvectors
(References: Comps Study Guide for Linear Algebra Section 4;
Damiano & Little, A Course in Linear Algebra, Chapter 4)

Let A be an n x n matrix, A € R be a scalar, and let ¥ € R. To say ¥ is an eigenvector of A with eigenvalue
A means ¥ # 0 and AU = AU.

Eigenvalues: Write down what it means to say that A is an eigenvalue of A.
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Eigenvector: Write down what it means to say that ¢ is an eigenvector of A.
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Ex. 1. Let A be an n x n matrix. Prove that A is invertible if and only if A = 0 is not an eigenvalue of A.
(Note: This is a common theorem that you could usually use without proof.)
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Ex. 2. Suppose that A is an invertible n X n matrix. Prove that if Z is an eigenvector of A with eigenvalue
A then Z is also an eigenvector of A~! with eigenvalue A7 1.
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Characteristic Polynomial & Finding Eigenvalues: The characteristic polynomial of A is det(A — AI). The
eigenvalues of A are the roots of the characteristic polynomial. . - > xR
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Ex. 3. Find the eigenvalues of the matrix A = |:O 10 ] .
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Eigenspaces & Finding Eigenvectors: The eigenspace E) of an eigenvalue X is the nullspace N(A — A\I) of
the matrix A — AI. The eigenvectors of A with eigenvalue A are the nonzero elements of F) .
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Ex. 4. For a basis for the eigenspace of each eigenvalue of the matrix A = [0 1 0 ] .
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Algebraic Multiplicity: The algebraic multiplicity of A is the number of times it appears as a root of the
characteristic polynomial.

Geometric Multiplicity: The geometric multiplicity of A is the dimension dim(E}) of the eigenspace E}.

Theorem: For any eigenvalue A, 1 < (geometric multiplicity of \) < (algebraic multiplicity of \).

Diagonalizability: Write down what it means to say that an n x n matrix A is diagonalizable.
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Theorem: Let A be an n X n matrix. The following are equivalent.
(1) A is diagonalizable.

(2) There is an invertible matrix P and a diagonal matrix D such that P~1AP = D.

(3) There is a basis of R™ consisting of eigenvectors of A (i.e., an eigenbasis).

(4) The characteristic polynomial has n real roots (possibly repeated) and for each root A,
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A is AWY  In this case, the basis of eigenvectors are the columns of P and the corresponding eigenvalues are the diagonal
o

N entries in the corresponding columns of D (i.e., in the same order).

Remark: This comes from the fact that if T is the linear map T'(z) = Az and « is an eigenbasis, then
D = [T]% is the matrix of T" with respect to o and P = [I]5!¢ is the change of basis matrix from the basis a
to standard coordinates on R™.
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Note: It follows that if A has n distinct real eigenvalues, then A is diagonalizable. However, if A has repeated
eigenvalues, it may or may not be diagonalizable. _
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Ex. 5. Determine whether or not the matrix A from examples 3 and 4 is diagonalizable. If it is, find an
invertible matrix P and a diagonal matrix D such that P~1AP = D.
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Ex. 6. Let the matrix A be as defined below. Find a diagonal matrix D and an invertible matrix P such
that A = PDP~!, or show that no such matrices exist.
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Additional Problems
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Ex. 7. Consider the matrix A= (3 0 —-5].
1 0 0

(a) Find all eigenvalues of A. >\ 1,0
(b) Find a diagonal matrix D and an invertible matrix P such that A = PDP~!, or show that no such
matrices exist.
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Ex. 8. Let A be the matrix A= |0 2 0. O O o ,3
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(a) Find all eigenvalues of A.

a
(b) Find a a basis of each eigenspace.
(c) Find a diagonal matrix D and an invertible matrix P such that D = PAP~!, or show that no such

matrices exist. - ~
e-vals are AS0,0,5

Ex. 9. Consider the matrix -
L 0 =2 QTOAU\\MS\\ < o 2 0
A=10 0 0]. ) o
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Find a basis for R? consisting of eigenvectors of A, or else prove that there is no such basis.

Ex. 10. Consider the matrix L e‘\m\s = ?—|3|3
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Is A diagonalizable? Why or why not?

Ex. 11. Let V be a finite-dimensional vector space, and let T': V — V be a linear transformation. Prove a\» on
that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V. g\ b Ex. | ) 2.0\8 @an

Ex. 12. Suppose that a 3 x 3 matrix A has 0 as an eigenvalue.
(a) What are the possible values of the rank of A? Justify your answer. O yor 2
(b) Let T : R® — R? be the linear transformation given by T'(x) = Az. Can T possibly be one-to-one? Can
T be o&to? Justify your answer. no
)

Ex. 13. Let A, B be n x n matrices that commute, i.e. AB = BA. Let v € R™ be an eigenvector of A such
that Bv # 0. Prove that Bwv is also an eigenvector of A. clgcl Yoo "W 9.2 %14

Ex. 14. Prove that if T': V — V is a linear map then the eigenspace Ej corresponding to the eigenvalue

A =0is equal to Ker(T). Vse Y daf.

Ex. 15. Suppose that A is an n x n matrix that satisfies A2 = I, where I is the n x n identity matrix.
Show that if A is an eigenvalue of A then A=1or A= —1. (% Sawe S‘Fﬂk‘a\) as By, L

Ex. 16. Let A be an n x n matrix and A be an elgenvalue of A. Prove that \™ is an eigenvalue of A™ for
all integers m > 1. chach, BN MW - 4| # 13

Ex. 17. Let A be an n X n matrix and o € R be a scalar that is NOT an eigenvalue of A. Suppose that p
is an eigenvalue for the matrix B = (A — of)~! with corresponding eigenvector v. Prove that v is also an
eigenvector for A and find a formula for the corresponding eigenvalue of A in terms of y and a. on 2016 exam



