4. Eigenvalues and Eigenvectors (References: Comps Study Guide for Linear Algebra Section 4; Damiano & Little, A Course in Linear Algebra, Chapter 4)

Let A be an $n \times n$ matrix, $\lambda \in \mathbb{R}$ be a scalar, and let $\vec{v} \in \mathbb{R}$. To say \vec{v} is an eigenvector of A with eigenvalue λ means $\vec{v} \neq 0$ and $A\vec{v} = \lambda \vec{v}$.

Eigenvalues: Write down what it means to say that λ is an eigenvalue of A.

It means there is a nontero vector
$$\vec{v}$$
 such that $A\vec{v} = \lambda\vec{v}$.

Eigenvector: Write down what it means to say that \vec{v} is an eigenvector of A.

H means that 7 = 0 and there is a scalar NEIR such that AV=XV.

Ex. 1. Let A be an $n \times n$ matrix. Prove that A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A. (Note: This is a common theorem that you could usually use without proof.)

By Contrapositive Suppose that 1=0 is an eigenvalue of A. Then there is a nonzero vector V \Rightarrow such that $A\vec{v} = 0\vec{v} = \vec{0}$. Then $\vec{v} \in Ker(A)$ and hence nullity (A) $\neq 0$ since V + O, Thus, A is not invertible. Taking the contrapositive, we have proven That if A is invertible then X=0 is not an eigenvalue of A. \Leftarrow Now suppose that $\lambda=0$ is not an eigenvalue of A. Then there is nð nonzero vector & such that A7=07=0, Hence, Ker(A)=E03 and So nullity (A) = 0. Thus, A is invertible.

> **Ex. 2.** Suppose that A is an invertible $n \times n$ matrix. Prove that if \vec{x} is an eigenvector of A with eigenvalue λ then \vec{x} is also an eigenvector of A^{-1} with eigenvalue λ^{-1} .

Suppose that X is an eigenvector of A with eigenvalue A. Then X = 0 and AX=XX. Since A is invertible, A" exists and multiplying by A" on both sides gives $A^{-1}AX = A^{-1}(\lambda \overline{X})$ or $I\vec{X} = \lambda A^{-1}\vec{X}$ or $\vec{X} = \lambda (\vec{A}, \vec{X}).$ Now since A is invertible and λ is an eigenvalue, $\lambda \neq 0$ and so we can divide by λ . Thus, $A^{-1}\vec{x} = \lambda'\vec{x}$. Then, since $\vec{x} \neq \vec{0}$, we have that \vec{x}

Characteristic Polynomial & Finding Eigenvalues: The characteristic polynomial of A is $det(A - \lambda I)$. The eigenvalues of A are the roots of the characteristic polynomial.

$$A\vec{v} = \lambda\vec{\tau}, \ \vec{\tau} \neq \vec{\delta} \quad iff \quad A\vec{\tau} - \lambda\vec{\tau} = \vec{\delta}, \ \vec{\tau} \neq \vec{\delta} \quad iff \quad \vec{\tau} \notin Ker(A^{-}\lambda I), \ \vec{\tau} \neq \vec{\delta} = \vec{\tau}, \ \vec{\sigma} = \vec{\tau}, \ \vec{\tau} \neq \vec{\delta} \quad iff \quad Ker(A^{-}\lambda I) \neq \vec{\delta} \neq \vec{\delta}, \ \vec{\tau} \neq \vec{\delta} = \vec{\tau}, \ \vec{\tau} \neq \vec{\delta} \quad iff \quad ker(A^{-}\lambda I) \neq \vec{\delta} \neq \vec{\delta}, \ \vec{\tau} \neq \vec{\delta} = \vec{\tau}, \ \vec{\tau} \neq \vec{\delta} \quad iff \quad ker(A^{-}\lambda I) \neq \vec{\delta} \neq \vec{\delta}, \ \vec{\tau} \neq \vec{\delta} = \vec{\tau}, \ \vec{\tau} \neq \vec{\delta} \quad iff \quad ker(A^{-}\lambda I) \neq \vec{\delta}, \ \vec{\tau} \neq \vec{\delta} \neq \vec{\delta} = \vec{\tau}, \ \vec{\tau} \neq \vec{\delta} = \vec{\delta} = \vec{\tau} + \vec{\delta} = \vec{\delta} =$$

Ex. 3. Find the eigenvalues of the matrix
$$A = \begin{bmatrix} 2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$
.

$$det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 & -2 \\ 0 & | -\lambda & 0 \\ 1 & 1 & -1 - \lambda \end{vmatrix} = -0 + (1 - \lambda) \begin{vmatrix} 2 - \lambda & -2 \\ 1 & -1 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda) [(2 - \lambda)(-1 - \lambda) + 2]$$

$$= (1 - \lambda) [-2 - 2\lambda + \lambda + \lambda^{2} + 2]$$

$$= (1 - \lambda) (\lambda^{2} - \lambda)$$

$$= (1 - \lambda) (\lambda^{2} - \lambda)$$

Eigenspaces & Finding Eigenvectors: The eigenspace E_{λ} of an eigenvalue λ is the nullspace $N(A - \lambda I)$ of the matrix $A - \lambda I$. The eigenvectors of A with eigenvalue λ are the nonzero elements of E_{λ} .

١

From above, char. poly, is
$$(1-\lambda)\lambda(\lambda-1) = -\lambda(\lambda-1)^2$$
 alg. mult. $(0) = 1$ geom. mult. $(0) = 1$
alg. mult. $(1) = 2$ geom. mult. $(1) = 2$

Algebraic Multiplicity: The algebraic multiplicity of λ is the number of times it appears as a root of the characteristic polynomial.

Geometric Multiplicity: The geometric multiplicity of λ is the dimension dim (E_{λ}) of the eigenspace E_{λ} .

Theorem: For any eigenvalue λ , $1 \leq (geometric multiplicity of <math>\lambda) \leq (algebraic multiplicity of \lambda)$.

Diagonalizability: Write down what it means to say that an $n \times n$ matrix A is diagonalizable.

Ether (2) or (3) depending on the text. These statements are equivalent. <u>Theorem</u>: Let A be an $n \times n$ matrix. The following are equivalent. (Study Suide says 2, text says 3)

(1) A is diagonalizable.

How to

le cide F is ywa

or not

- (2) There is an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- (3) There is a basis of \mathbb{R}^n consisting of eigenvectors of A (i.e., an eigenbasis).
- (4) The characteristic polynomial has n real roots (possibly repeated) and for each root λ ,

(geometric multiplicity of λ) = (algebraic multiplicity of λ).

In this case, the basis of eigenvectors are the columns of P and the corresponding eigenvalues are the diagonal entries in the corresponding columns of D (i.e., in the same order).

<u>Remark</u>: This comes from the fact that if T is the linear map T(x) = Ax and α is an eigenbasis, then $\overline{D = [T]}^{\alpha}_{\alpha}$ is the matrix of T with respect to α and $P = [I]^{std}_{\alpha}$ is the change of basis matrix from the basis α to standard coordinates on \mathbb{R}^n .

Say
$$\alpha = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
 is an eigenbasis corresponding to e-vals $\lambda_1, \lambda_2, \lambda_3$.
Then $T(\vec{v}_1) = A\vec{v}_1 = \lambda_1\vec{v}_1 \implies [T(v_1)]_{\alpha} = \lambda_1\vec{e}_1$. Hence $[T]_{\alpha}^{\alpha} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = D$
and for $[I]_{\alpha}^{\text{std}} = [\vec{v}_1 & \vec{v}_2 & \vec{v}_3] = P$ we have $[T]_{\text{std}}^{\text{std}} = [I]_{\alpha}^{\text{std}} [T]_{\alpha}^{\alpha} [I]_{\alpha}^{\alpha} [I]_{\alpha}^{\alpha}$.
or $A = P D P^{-1} \implies P^* A P = D$.

Note: It follows that if A has n distinct real eigenvalues, then A is diagonalizable. However, if A has repeated eigenvalues, it may or may not be diagonalizable. Then algmu ()=1 = geom.mu () Y)

Ex. 5. Determine whether or not the matrix A from examples 3 and 4 is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

$$A = \begin{bmatrix} 2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$

In 3 and 4 we found that the eigenvalues of A are $\lambda = 0$ and $\lambda = 1$
are both real. And algebraic multiplicity (0) = 1 = geometric multiplicity(0)
and algebraic multiplicity (1) = 2 = geometric multiplicity (1). Thus, A is
diagonalizable. A basis for Eo is $\mathcal{E}(\frac{1}{2})$ and a basis for E1 is
 $\mathcal{E}(\frac{1}{2})$, $(\frac{2}{1})$ so for D= $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and P = $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, we have
 $P^{T}AP = D$.

Ex. 6. Let the matrix A be as defined below. Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$, or show that no such matrices exist.

$$\begin{pmatrix} + & - & + \\ + & - & + \end{pmatrix} = A = \begin{bmatrix} 0 & 4 & 2 \\ 0 & -2 & 1 \\ 0 & -1 & 0 \end{bmatrix}.$$

1. Find e-vals: $det(A - \lambda I) = \begin{bmatrix} -\lambda & 4 & 2 \\ 0 & -2 - \lambda & 1 \\ 0 & -1 & -\lambda \end{bmatrix} = -\lambda \begin{bmatrix} -2 - \lambda & 1 \\ -1 & -\lambda \end{bmatrix} = -\lambda \begin{bmatrix} (-2 - \lambda)(-\lambda) + 1 \end{bmatrix}$

$$= -\lambda (\lambda^{2} + 2\lambda + 1)$$

$$= -\lambda^{2} + 2\lambda^{2} + 2\lambda^{2} + 1$$

$$= -\lambda^{2} + 2\lambda^{2} + 1$$

$$=$$

So, $\dim(E_{-1})=1$. Since the algebraic multiplicity of $\lambda=-1$ is 2, the algomulti of -1 is not equal to its geometry. A is not diagonalizable, and so no such matrices exist. Additional Problems

Ex. 7. Consider the matrix
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 0 & -5 \\ 1 & 0 & 0 \end{bmatrix}$$
.

- (a) Find all eigenvalues of A. $\lambda = 10$
- (b) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$, or show that no such matrices exist.

Ex. 8. Let A be the matrix
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ -6 & -1 & -3 \end{bmatrix}$$
. $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ $P = \begin{pmatrix} -1 & -1 & -2 \\ 0 & 0 & -3 \\ 2 & 3 & 3 \end{pmatrix}$

- (a) Find all eigenvalues of A.
- (b) Find a basis of each eigenspace.
- (c) Find a diagonal matrix D and an invertible matrix P such that $D = PAP^{-1}$, or show that no such matrices exist. e^{-vals} are $\lambda = 0, 0, 5$
- Ex. 9. Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{bmatrix}. \quad \begin{array}{c} \text{eigenbasis} = \\ & & \\ \end{array} \left\{ \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right\}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{array} \right\}, \begin{pmatrix} -1 \\ 0 \\ 2 \\ 0 \\ 1 \end{array} \right\}$$

Find a basis for \mathbb{R}^3 consisting of eigenvectors of A, or else prove that there is no such basis.

Ex. 10. Consider the matrix

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 5 & 0 \\ 1 & 2 & 2 \end{bmatrix} \cdot \quad bit \quad geom mu(3) = 1$$

Is A diagonalizable? Why or why not?

Ex. 11. Let V be a finite-dimensional vector space, and let $T: V \to V$ be a linear transformation. Prove that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V. Similar to E_{X_1} , 2016 examples that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V.

Ex. 12. Suppose that a 3×3 matrix A has 0 as an eigenvalue.

- (a) What are the possible values of the rank of A? Justify your answer. 01) or 2
- (b) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by T(x) = Ax. Can T possibly be one-to-one? Can T be onto? Justify your answer.

Ex. 13. Let A, B be $n \times n$ matrices that commute, i.e. AB = BA. Let $v \in \mathbb{R}^n$ be an eigenvector of A such that $Bv \neq 0$. Prove that Bv is also an eigenvector of A. check your $HW \stackrel{!}{:} 9.2 \stackrel{*}{=} 14$

Ex. 14. Prove that if $T: V \to V$ is a linear map then the eigenspace E_0 corresponding to the eigenvalue $\lambda = 0$ is equal to Ker(T). Use the def.

Ex. 15. Suppose that A is an $n \times n$ matrix that satisfies $A^2 = I$, where I is the $n \times n$ identity matrix. Show that if λ is an eigenvalue of A then $\lambda = 1$ or $\lambda = -1$. Use same strategy as E_{λ} , 2

Ex. 16. Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Prove that λ^m is an eigenvalue of A^m for all integers $m \ge 1$. Check your HW: $4 \downarrow 4 \downarrow 3$

Ex. 17. Let A be an $n \times n$ matrix and $\alpha \in \mathbb{R}$ be a scalar that is NOT an eigenvalue of A. Suppose that μ is an eigenvalue for the matrix $B = (A - \alpha I)^{-1}$ with corresponding eigenvector v. Prove that v is also an eigenvector for A and find a formula for the corresponding eigenvalue of A in terms of μ and α . If $A = (A - \alpha I)^{-1}$ with corresponding eigenvalue of A in terms of μ and α .