4. Eigenvalues and Eigenvectors
(References: Comps Study Guide for Linear Algebra Section 4; Damiano \& Little, A Course in Linear Algebra, Chapter 4)

Let A be an $n \times n$ matrix, $\lambda \in \mathbb{R}$ be a scalar, and let $\vec{v} \in \mathbb{R}$. To say \vec{v} is an eigenvector of A with eigenvalue λ means $\vec{v} \neq 0$ and $A \vec{v}=\lambda \vec{v}$.

Eigenvalues: Write down what it means to say that λ is an eigenvalue of A.
It means there is a nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$.
Eigenvector: Write down what it means to say that \vec{v} is an eigenvector of A.
It means that $\vec{V} \neq \vec{O}$ and there is a scalar $\lambda \in \mathbb{R}$ such that $A \vec{V}=\lambda \vec{V}$.
Ex. 1. Let A be an $n \times n$ matrix. Prove that A is invertible if and only if $\lambda=0$ is not an eigenvalue of A.
By (Note: This is a common theorem that you could usually use without proof.)
Suppose that $\lambda=0$ is an eigenvalue of A. Then there is a nonzero vector \vec{v} such that $A \vec{V}=0 \vec{V}=\overrightarrow{0}$. Then $\vec{V} \in \operatorname{Ker}(A)$ and hence nullity $(A) \neq 0$ since $\vec{V} \neq \vec{O}$. Thus, A is not invertible. Taking the contrapositive, we have proven That if A is invertible then $\lambda=0$ is not an eigenvalue of A.
Now suppose that $\lambda=0$ is not an eigenvalue of A. Then there is no nonzero vector \vec{v} such that $A \vec{v}=0 \vec{v}=\overrightarrow{0}$. Hence, ken $(A)=\{\overrightarrow{0}\}$ and So nullity $(A)=0$. Thus, A is invertible.

Ex. 2. Suppose that A is an invertible $n \times n$ matrix. Prove that if \vec{x} is an eigenvector of A with eigenvalue λ then \vec{x} is also an eigenvector of A^{-1} with eigenvalue λ^{-1}.
Suppose that \vec{x} is an eigenvector of A with eigenvalue λ. Then $\vec{x} \neq \overrightarrow{0}$ and $A \vec{x}=\lambda \vec{x}$. Since A is invertible, A^{-1} exists and multiplying by A^{-1} on both sides gives $A^{-1} A \vec{x}=A^{-1}(\lambda \vec{x})$

$$
\begin{array}{ll}
\text { or } & I \vec{x}=\lambda A^{-1} \vec{x} \\
\text { or } & \vec{x}=\lambda\left(A^{-1} \vec{x}\right)
\end{array}
$$

Now since A is invertible and λ is an eigenvalue, $\lambda \neq 0$ and so we can divide by λ. Thus, $A^{-1} \vec{x}=\lambda^{-1} \vec{x}$. Then, since $\vec{x} \neq \overrightarrow{0}$, we have that \vec{x} is an eigenvector of A^{-1} with eigenvalue λ^{-1}.

Characteristic Polynomial \& Finding Eigenvalues: The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)$. The eigenvalues of A are the roots of the characteristic polynomial.
$A \vec{v}=\lambda \vec{v}, \vec{v} \neq \overrightarrow{0}$ iff $A \vec{v}-\lambda \vec{v}=\overrightarrow{0}, \vec{v} \neq \overrightarrow{0}$. if $\vec{v} \in \operatorname{Ker}(A-\lambda I), \vec{v} \neq \overrightarrow{0}$
iff $A \vec{v}-\lambda I \vec{v}=\overrightarrow{0}, \vec{v} \neq \overrightarrow{0}$ if $\operatorname{ker}(A-\lambda I) \neq\{\overrightarrow{0}\}$
iff $(A-\lambda I) \vec{v}=\overrightarrow{0}, \vec{v} \neq \overrightarrow{0}$ iff $\operatorname{det}(A-\lambda I) \neq 0$.
Ex. 3. Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 1 & -2 \\
0 & 1-\lambda & 0 \\
1 & 1 & -1-\lambda
\end{array}\right| & =-0+(1-\lambda)\left|\begin{array}{cc}
2-\lambda & -2 \\
1 & -1-\lambda
\end{array}\right|-0 \\
\left(\begin{array}{l}
+ \\
-+- \\
+-+
\end{array}\right) & =(1-\lambda)[(2-\lambda)(-1-\lambda)+2] \\
& =(1-\lambda)\left[-2-2 \lambda+\lambda+\lambda^{2}+2\right] \\
& =(1-\lambda)\left(\lambda^{2}-\lambda\right) \\
& =(1-\lambda) \lambda(\lambda-1)=0 \Rightarrow \lambda=0,1
\end{aligned}
$$

Eigenspaces \& Finding Eigenvectors: The eigenspace E_{λ} of an eigenvalue λ is the nullspace $N(A-\lambda I)$ of the matrix $A-\lambda I$. The eigenvectors of A with eigenvalue λ are the nonzero elements of E_{λ}.

Ex. 4. For a basis for the eigenspace of each eigenvalue of the matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right]$.

$$
\begin{aligned}
& \lambda=0 \text { : we want }(A-0 I) \vec{v}=\overrightarrow{0} \\
& {\left[\begin{array}{ccc|c}
2 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & -1 & 0
\end{array}\right] \quad R 1-2 R 3-R 3\left[\begin{array}{ccc|c}
2 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] \begin{array}{l}
R 1-R 2 \rightarrow R 1 \\
R 2+R 3 \rightarrow R 3
\end{array}\left[\begin{array}{ccc|c}
2 & 0 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \Rightarrow 2 v_{1}-2 v_{3}=0 \Rightarrow \begin{array}{l}
v_{1}=v_{3} \\
v_{2}=0
\end{array} \text { So a basis of } E_{0} \text { is }\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\} \text {. } \\
& v_{2}=0 \quad v_{3} \text { tree } \\
& \uparrow_{\operatorname{dim}\left(E_{0}\right)}=1 \\
& \lambda=1 \text { : we want }(A-I) J=\overrightarrow{0} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & -2 & 0
\end{array}\right] \quad R_{1}-R_{3}+R_{3}\left[\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
v_{1}+v_{2}-2 v_{3}=0 \\
v_{1}=-v_{2}+2 v_{3} \\
v_{2} v_{3} \text { free }
\end{array}} \\
& \text { so a basis of } E_{1} \text { is }\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)\right\} \text {. } \\
& \nabla \lambda_{\operatorname{dim}\left(E_{1}\right)}=2
\end{aligned}
$$

From above, char. poly, is $(1-\lambda) \lambda(\lambda-1)=-\lambda(\lambda-1)^{2}$

$$
\operatorname{alg} \cdot \operatorname{muH} \cdot(1)=2 \quad \text { gcommuH }(1)=2
$$

Algebraic Multiplicity: The algebraic multiplicity of λ is the number of times it appears as a root of the characteristic polynomial.

Geometric Multiplicity: The geometric multiplicity of λ is the dimension $\operatorname{dim}\left(E_{\lambda}\right)$ of the eigenspace E_{λ}.
Theorem: For any eigenvalue $\lambda, \quad 1 \leq$ (geometric multiplicity of $\lambda) \leq($ algebraic multiplicity of λ).
Diagonalizability: Write down what it means to say that an $n \times n$ matrix A is diagonalizable.
Ether (2) or (3) depending on the text. These statements are equivalent. Theorem: Let A be an $n \times n$ matrix. The following are equivalent. (study guide says 2 , text says 3)
(1) A is diagonalizable.
(2) There is an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
(3) There is a basis of \mathbb{R}^{n} consisting of eigenvectors of A (i.e., an eigenbasis).

How to
(4) The characteristic polynomial has n real roots (possibly repeated) and for each root λ, decide if $($ geometric multiplicity of $\lambda)=($ algebraic multiplicity of $\lambda)$.
In this case, the basis of eigenvectors are the columns of P and the corresponding eigenvalues are the diagonal entries in the corresponding columns of D (i.e., in the same order).

Remark: This comes from the fact that if T is the linear map $T(x)=A x$ and α is an eigenbasis, then $D=[T]_{\alpha}^{\alpha}$ is the matrix of T with respect to α and $P=[I]_{\alpha}^{s t d}$ is the change of basis matrix from the basis α to standard coordinates on \mathbb{R}^{n}.
Say $\alpha=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an eigenbersis corresponding to $e^{-v a l s} \lambda_{1}, \lambda_{2}, \lambda_{3}$.
Then $T\left(\vec{v}_{i}\right)=A \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \Rightarrow\left[T\left(v_{i}\right)\right]_{\alpha}=\lambda_{i} \vec{e}_{i}$. Hence $[T]_{\alpha}^{\alpha}=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]=D$
and for $[I]_{\alpha}^{s+d}=\left[\vec{v}_{1} \vec{v}_{2} \vec{v}_{3}\right]=P$ we have $[T]_{s+d}^{s+d}=[I]_{\alpha}^{s+d}[T]_{\alpha}^{\alpha}[I]_{s+d}^{\alpha}$
or $A=P D P^{-1} \Rightarrow P^{-1} A P=D$.
Note: It follows that if A has n distinct real eigenvalues, then A is diagonalizable. However, if A has repeated eigenvalues, it may or may not be diagonalizable. J Then $\operatorname{algmv}(\lambda)=1=\operatorname{geommu}(\lambda) \forall \lambda$
Ex. 5. Determine whether or not the matrix A from examples 3 and 4 is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.

$$
A=\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

In 3 and 4 we found that the eigenvalues of A are $\lambda=0$ and $\lambda=1$ are both real. And algebraic multiplicity $(0)=1=$ geometric multiplicity (0) and algebraic multiplicity $(1)=2=$ geometric multiplicity (1). Thus, A is diagonalizable. A basis for E_{0} is $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ and a basis for E_{1} is

$$
\begin{aligned}
& P^{+A} A P=D .
\end{aligned}
$$

Ex. 6. Let the matrix A be as defined below. Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, or show that no such matrices exist.

$$
\left(\begin{array}{ll}
\mathbf{t} & -\mathbf{t} \\
\mathbf{+} & \mathbf{+} \\
\mathbf{-}
\end{array}\right) \quad A=\left[\begin{array}{ccc}
0 & 4 & 2 \\
0 & -2 & 1 \\
0 & -1 & 0
\end{array}\right] \text {. }
$$

1. Find $e^{-v a l s:}$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 4 & 2 \\
0 & -2-\lambda & 1 \\
0 & -1 & -\lambda
\end{array}\right|=-\lambda\left|\begin{array}{cc}
-2-\lambda & 1 \\
-1 & -\lambda
\end{array}\right| \\
&=-\lambda[(-2-\lambda)(-\lambda)+1] \\
&=-\lambda\left(\lambda^{2}+2 \lambda+1\right) \\
&=-\lambda(\lambda+1)(\lambda+1) \Rightarrow \lambda=0,-1
\end{aligned}
$$

2. Find e-vecs: Since alg.mu. $(0)=1=$ geom,mu. (0) automatically, diagonalizability depends on geommu. (-1). So, let's start with $\lambda=-1$.
$\lambda=-1$: we want $(A+I) \vec{v}=\overrightarrow{0}$

$$
\begin{aligned}
& \underline{\lambda=-1} \text { : we want }(A+I) \vec{v}=\overrightarrow{0} \\
& {\left[\begin{array}{ccc|c}
1 & 4 & 2 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right] \begin{array}{c}
4 R 2+R 1 \rightarrow R 1 \\
R 2-R 3 \rightarrow R 3
\end{array}\left[\begin{array}{ccc|c}
1 & 0 & b & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{l}
v_{1}=-6 v_{3} \\
v_{2}=v_{3} \\
v_{3} \text { free }
\end{array}} \\
&
\end{aligned}
$$

So, $\operatorname{dim}\left(E_{-1}\right)=1$. Since the algebraic multiphaty of $\lambda=-1$ is 2 , the alg, multi, of -1 is not equal to its geom, mut. Thus, A is not diagonalizable, and so no ouch matrices exist.

Additional Problems

Ex. 7. Consider the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 0 & -5 \\ 1 & 0 & 0\end{array}\right]$.
(a) Find all eigenvalues of $A . \lambda=1,0$
(b) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, or show that no such matrices exist.
Ex. 8. Let A be the matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 2 & 0 \\ -6 & -1 & -3\end{array}\right] . \quad D=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right) \quad P=\left(\begin{array}{rrr}-1 & -1 & -2 \\ 0 & 0 & -3 \\ 2 & 3 & 3\end{array}\right)$
(a) Find all eigenvalues of A.
(b) Find a a basis of each eigenspace.
(c) Find a diagonal matrix D and an invertible matrix P such that $D=P A P^{-1}$, or show that no such matrices exist.

$$
e \text {-vals are } \lambda=0,0,5
$$

Ex. 9. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & 0 \\
-2 & 0 & 4
\end{array}\right] . \quad \text { eigen basis }=\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)\right\}
$$

Find a basis for \mathbb{R}^{3} consisting of eigenvectors of A, or else prove that there is no such basis.
Ex. 10. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 5 & 0 \\
1 & 2 & 2
\end{array}\right] . \quad \text { but } \quad \text { geanmu }(3)=1
$$

Is A diagonalizable? Why or why not?

Ex. 11. Let V be a finite-dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation. Prove also on that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V. similor to $E x_{1} 1,2018$ exam
Ex. 12. Suppose that a 3×3 matrix A has 0 as an eigenvalue.
(a) What are the possible values of the rank of A ? Justify your answer. O, 1, or 2
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by $T(x)=A x$. Can T possibly be one-to-one? Can T be onto? Justify your answer.

no

Ex. 13. Let A, B be $n \times n$ matrices that commute, i.e. $A B=B A$. Let $v \in \mathbb{R}^{n}$ be an eigenvector of A such that $B v \neq 0$. Prove that $B v$ is also an eigenvector of A. check your HW: 4.2 \# 14
Ex. 14. Prove that if $T: V \rightarrow V$ is a linear map then the eigenspace E_{0} corresponding to the eigenvalue $\lambda=0$ is equal to $\operatorname{Ker}(T)$. Use the def.

Ex. 15. Suppose that A is an $n \times n$ matrix that satisfies $A^{2}=I$, where I is the $n \times n$ identity matrix. Show that if λ is an eigenvalue of A then $\lambda=1$ or $\lambda=-1$. Use same strategy as $E x, 2$
Ex. 16. Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Prove that λ^{m} is an eigenvalue of A^{m} for all integers $m \geq 1$. check your HW: $4.1 \# 13$
Ex. 17. Let A be an $n \times n$ matrix and $\alpha \in \mathbb{R}$ be a scalar that is NOT an eigenvalue of A. Suppose that μ is an eigenvalue for the matrix $B=(A-\alpha I)^{-1}$ with corresponding eigenvector v. Prove that v is also an eigenvector for A and find a formula for the corresponding eigenvalue of A in terms of μ and α. on 2010 exam

