4. Double Integrals

(from Stewart, Calculus, Chapter 15)

Partial Integrals: $\int_{c}^{d} f(x, y) dy$ is calculated by holding x constant and integrating with respect to y from y = c to y = d.

Note that the result is a function of x.

For each fixed x, the trace of f(x,y) is a curve C in the plane x= constant. The partial integral $A(x)=\int_c^d f(x,y)\ dy$ is the area under the curve C from y=c to y=d.

Similarly, $\int_a^b f(x,y) \ dx$ is calculated by holding y constant and integrating with respect to x from x=a to x=b. The result is a function of y.

Finding Volume with a Double Integral:

 $\iint\limits_D f(x,y)dA$ is the signed volume between the surface z=f(x,y) and the region D in the xy -plane.

Finding Area with a Double Integral:

$$Area(D) = \iint_D 1 \ dA$$

FIGURE 19
Cylinder with base *D* and height 1

Iterated Integrals

Vertically Simple Regions:

$$D = \{(x, y) : a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

$$\iint_D f(x,y) dA = \int_a^b \left(\int_{g_1(x)}^{g_2(x)} f(x,y) dy \right) dx$$

$y = g_2(x)$ $y = g_1(x)$ $0 \quad a \quad \times \quad b \quad x$

Horizontally Simple Regions:

$$D = \{(x,y) : c \le y \le d, \ h_1(y) \le x \le h_2(y)\}$$

$$\iint_D f(x,y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) dx dy$$

$$V = \iint_{D} xy dA$$

Intersection
$$y+1=\frac{1}{2}y^2-3$$

$$y^{2}-2y-8=0$$

$$(y-4)(y+2)=0$$

$$y=4, y=-2$$

$$x=5$$

Ex. 2. Evaluate
$$\int_0^1 \left(\int_x^1 \sin(y^2) \ dy \right) dx.$$

We can't compute I sin(y2) dy so we try changing the order of int.

Draw the Region

$$\int_{0}^{1} \int_{0}^{1} \sin(y^{2}) dy dx = \int_{0}^{1} \int_{0}^{1} \sin(y^{2}) dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} \sin(y^{2}) dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} \sin(y^{2}) dx dy$$

$$y = x$$

$$y = y$$

$$y =$$

u (0) = 02 = () u(1)=12=1

$$= \int_{2}^{3} y \sin(y^{2}) dy$$

$$= \int_{2}^{3} 4 \sin(w) du$$

$$= -\frac{1}{2} \cos(w) \Big|_{0}^{3} = -\frac{1}{2} \cos(1) + \frac{1}{2}$$

Ex. 3. Reverse the order of integration in the integral $\int_{4}^{9} \int_{2\pi y}^{\sqrt{y}} f(x,y) dx dy$.

$$=\int_{2}^{3}\left(\int_{X^{2}}^{9}f(x,y)dy\right)dx$$

Ex. 4. Evaluate $\iint_D (x+2y) dA$, where D is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$. $2x^2=1+x^2$ $x^2=1-x^2$ $x^2=1-x^2$

Draw the Region
$$y = 2x^{2}$$

$$y = x^{2+1}$$

$$\sum_{x} (x+2y) dA = \int_{-1}^{1} \int_{2x^{2}}^{2+1} (x+2y) dy dx$$

$$= \int_{-1}^{1} (xy+y^{2}) \Big|_{y=2x^{2}}^{y=x^{2+1}} dx$$

$$= \int_{-1}^{1} (x(x^{2+1}) + (x^{2+1})^{2} - 2x^{3} - (2x^{2})^{2}) dx$$

$$= \int_{-1}^{1} (x^{3} + x + x^{4} + 2x^{2} + 1 - 2x^{3} - 4x^{4}) dx$$

$$= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx$$

$$= \int_{-3}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{3} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

$$= -3 \int_{5}^{1} (-3x^{4} + 2x^{2} + 2x^{2} + x + 1) dx$$

Polar Coordinates (r, θ)

r is the signed distance from the origin

 θ is the angle measured counter-clockwise from the positive x-axis

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$ Rectarded $y = r\sin(\theta)$ $y = r\sin$

Double Integrals in Polar Coordinates:

$$\iint_{R} f(x,y) \ dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) \underline{r \ dr \ d\theta}.$$

Ex. 5. Evaluate $\iint_R (3x + 4y^2) dA$ where R is the region in the upper half plane $x \ge 0$ bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

$$\int_{R}^{3} (3x + 4y^{2}) dA = \int_{0}^{\pi} \int_{1}^{2} [3r \cos \theta + 4(r \sin \theta)^{2}] r dr d\theta$$

$$= \int_{0}^{\pi} \int_{1}^{2} [3r^{2} \cos \theta + 4r^{3} \sin^{2} \theta] dr d\theta$$

$$= \int_{0}^{\pi} r^{3} \cos \theta + r^{4} \sin^{2} \theta \int_{r=1}^{r=2} d\theta$$

$$= \int_{0}^{\pi} 7 \cos \theta + 15 \sin^{2} \theta d\theta$$

$$= \int_{0}^{\pi} 7 \cos \theta + 15 \left(\frac{1 - \cos(2\theta)}{2}\right) d\theta$$

$$= \int_{0}^{\pi} 7 \cos \theta + \frac{15}{2} \theta - 15 \frac{\sin(2\theta)}{4} \int_{0}^{\pi} \theta$$

$$= \frac{15}{3} \pi$$

Trig Identity
$$\sin^2\theta = 1 - \cos(2\theta)$$

Ex. 6. Evaluate the integral
$$\int_{-1}^{0} \int_{0}^{\sqrt{1-x^2}} \cos(x^2 + y^2) \, dy \, dx.$$

Draw the Region

$$y = \sqrt{1-\chi^2}$$
 => $y^2 = 1-\chi^2$, $y^{7/0}$

Evaluate the integral
$$\int_{-1}^{1} \int_{0}^{1} \cos(x^{2} + y^{2}) dy dx$$
.

$$y = \sqrt{1-x^{2}} \implies y^{2} = |-x^{2}|, y > 0$$

$$x^{2} + y^{2} = |-x^{2}|, y$$

Ex. 7. Find the volume of the region bounded by the paraboloids $z = x^2 + y^2$ and $z = 8 - x^2 - y^2$. $z = -(x^2 + y^2) + 8$

Intersection
$$\chi^{2+y^2} = 8-\chi^2-y^2$$

 $\chi^{2+y^2} = 4$

Volume =
$$\iint (8-x^2-y^2) - (x^2+y^2) dA$$
=
$$\iint 8-2(x^2+y^2) dA$$
=
$$\lim_{x \to 0} \int_{0}^{2\pi} (8-2r^2) r dr d\theta$$
=
$$\lim_{x \to 0} |4r^2 - \frac{2}{4}r^4|_{0}^{2\pi} d\theta = (16-8) 2\pi = 16\pi$$

(a)
$$\int_0^1 \left(\int_{x^2}^1 x^3 \sin(y^3) \, dy \right) dx$$

Ex. 8. Evaluate the integrals.
(a)
$$\int_0^1 \left(\int_{x^2}^1 x^3 \sin(y^3) \, dy \right) dx = \int_0^1 \left(\int_0^1 x^3 \sin(y^3) \, dx \right) dx$$

$$\frac{y = x^2}{y = x^2} = \int_0^1 \left(\frac{1}{4}x^4\right) \frac{y}{0} \sin(y^3) dy$$

$$= \int_0^1 \frac{1}{4}y^2 \sin(y^3) dy$$

$$= \int_0^1 \frac{1}{4}y^2 \sin(y^3) dy$$

$$= -\frac{1}{12} \cos(y^3) \Big|_{0}^{1} = -\frac{1}{12} \cos(1) + \frac{1}{12}$$

(b)
$$\iint_D e^{x^2} dA$$
 where D is the region bounded by the lines $y = 2x$, $y = 0$, and $x = 1$.

Drav + le Region
$$y = 2x$$

$$x = 1$$

$$X = 0$$

$$\iint_{D} e^{x^{2}} dA = \iint_{0}^{2x} e^{x^{2}} dy dx$$

$$= \iint_{0}^{2x} e^{x^{2}} dx$$

$$= \iint_{0}^{2x} e^{x^{2}} dx$$

$$= \int_{0}^{1} 2x e^{x^{2}} dx$$

$$= \int_{0}^{1} 2x e^{x^{2}} dx$$

(c)
$$\iint_D e^{x^2+y^2} dA$$
 where D is the top half of the disk centered at the origin of radius 3.

$$\iint_{D} e^{x^{2}+y^{2}} dx = \iint_{0}^{3} e^{r^{2}} r dr d\theta$$

$$= \iint_{0}^{\pi} \frac{1}{2} e^{r^{2}} \Big|_{0}^{3} d\theta$$

$$= \iint_{0}^{\pi} (e^{q}-1)$$