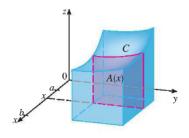
4. Double Integrals

(from Stewart, Calculus, Chapter 15)

Partial Integrals: $\int_c^d f(x,y) dy$ is calculated by holding x constant and integrating with respect to y from y=c to y=d.

Note that the result is a function of x.

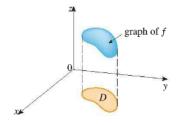
For each fixed x, the trace of f(x,y) is a curve C in the plane x= constant. The partial integral $A(x)=\int_c^d f(x,y)\ dy$ is the area under the curve C from y=c to y=d.



Similarly, $\int_a^b f(x,y) dx$ is calculated by holding y constant and integrating with respect to x from x=a to x=b. The result is a function of y.

Finding Volume with a Double Integral:

 $\iint\limits_D f(x,y)dA \text{ is the signed volume between the surface } \\ z = f(x,y) \text{ and the region } D \text{ in the } xy\text{-plane}.$



Finding Area with a Double Integral:

$$Area(D) = \iint\limits_{D} 1 \ dA$$

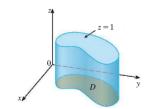


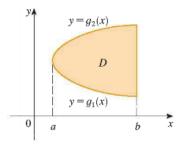
FIGURE 19 Cylinder with base D and height 1

Iterated Integrals

Vertically Simple Regions:

$$D = \{(x, y) : a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

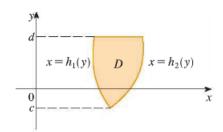
$$\iint_D f(x,y) \ dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \ dy \ dx$$



Horizontally Simple Regions:

$$D = \{(x, y) : c \le y \le d, h_1(y) \le x \le h_2(y)\}\$$

$$\iint_D f(x,y) \ dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \ dx \ dy$$



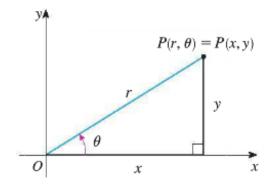
Ex. 1. Evaluate $\iint_D xy \ dA$ where D is the region bounded by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

Ex. 2. Evaluate $\int_0^1 \int_x^1 \sin(y^2) \ dy \ dx.$

Ex. 3. Reverse the order of integration in the integral $\int_4^9 \int_2^{\sqrt{y}} f(x,y) \ dx \ dy$.

Ex. 4. Evaluate $\iint_D (x+2y) \ dA$, where D is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$.

Polar Coordinates (r, θ)



r is the signed distance from the origin

 θ is the angle measured counter-clockwise from the positive $x\text{-}\mathrm{axis}$

$$x = r\cos(\theta) \qquad y = r\sin(\theta)$$
$$r^2 = x^2 + y^2$$
$$\tan(\theta) = \frac{y}{x}$$

Double Integrals in Polar Coordinates:

$$\iint_R f(x,y) \ dA = \int_{\alpha}^{\beta} \int_a^b f(r\cos\theta,r\sin\theta) \ r \ dr \ d\theta.$$

Ex. 5. Evaluate $\iint_R (3x + 4y^2) dA$ where R is the region in the upper half plane $y \ge 0$ bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

Ex. 6. Evaluate the integral $\int_{-1}^{0} \int_{0}^{\sqrt{1-x^2}} \cos(x^2 + y^2) \, dy \, dx$.

Ex. 7. Find the volume of the region bounded by the paraboloids $z = x^2 + y^2$ and $z = 8 - x^2 - y^2$.

Ex. 8. Evaluate the integrals.

(a)
$$\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \, dy \, dx$$

(b) $\iint_D e^{x^2} dA$ where D is the region bounded by the lines y = 2x, y = 0, and x = 1.

(c) $\iint_D e^{x^2+y^2} dA$ where D is the top half of the disk centered at the origin of radius 3.