4. Eigenvalues and Eigenvectors

(References: Comps Study Guide for Linear Algebra Section 4; Damiano \& Little, A Course in Linear Algebra, Chapter 4)

Let A be an $n \times n$ matrix, $\lambda \in \mathbb{R}$ be a scalar, and let $\vec{v} \in \mathbb{R}$. To say \vec{v} is an eigenvector of A with eigenvalue λ means $\vec{v} \neq 0$ and $A \vec{v}=\lambda \vec{v}$.

Eigenvalues: Write down what it means to say that λ is an eigenvalue of A.

Eigenvector: Write down what it means to say that \vec{v} is an eigenvector of A.

Ex. 1. Let A be an $n \times n$ matrix. Prove that A is invertible if and only if $\lambda=0$ is not an eigenvalue of A. (Note: This is a common theorem that you could usually use without proof.)

Ex. 2. Suppose that A is an invertible $n \times n$ matrix. Prove that if \vec{x} is an eigenvector of A with eigenvalue λ then \vec{x} is also an eigenvector of A^{-1} with eigenvalue λ^{-1}.

Characteristic Polynomial \& Finding Eigenvalues: The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)$. The eigenvalues of A are the roots of the characteristic polynomial.

Ex. 3. Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right]$.

Eigenspaces \& Finding Eigenvectors: The eigenspace E_{λ} of an eigenvalue λ is the nullspace $N(A-\lambda I)$ of the matrix $A-\lambda I$. The eigenvectors of A with eigenvalue λ are the nonzero elements of E_{λ}.
Ex. 4. For a basis for the eigenspace of each eigenvalue of the matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right]$.

Algebraic Multiplicity: The algebraic multiplicity of λ is the number of times it appears as a root of the characteristic polynomial.

Geometric Multiplicity: The geometric multiplicity of λ is the dimension $\operatorname{dim}\left(E_{\lambda}\right)$ of the eigenspace E_{λ}.
Theorem: For any eigenvalue $\lambda, \quad 1 \leq$ (geometric multiplicity of $\lambda) \leq$ (algebraic multiplicity of λ).
Diagonalizability: Write down what it means to say that an $n \times n$ matrix A is diagonalizable.

Theorem: Let A be an $n \times n$ matrix. The following are equivalent.
(1) A is diagonalizable.
(2) There is an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
(3) There is a basis of \mathbb{R}^{n} consisting of eigenvectors of A (i.e., an eigenbasis).
(4) The characteristic polynomial has n real roots (possibly repeated) and for each root λ, $($ geometric multiplicity of $\lambda)=($ algebraic multiplicity of $\lambda)$.
In this case, the basis of eigenvectors are the columns of P and the corresponding eigenvalues are the diagonal entries in the corresponding columns of D (i.e., in the same order).

Remark: This comes from the fact that if T is the linear map $T(x)=A x$ and α is an eigenbasis, then $D=[T]_{\alpha}^{\alpha}$ is the matrix of T with respect to α and $P=[I]_{\alpha}^{s t d}$ is the change of basis matrix from the basis α to standard coordinates on \mathbb{R}^{n}.

Note: It follows that if A has n distinct real eigenvalues, then A is diagonalizable. However, if A has repeated eigenvalues, it may or may not be diagonalizable.

Ex. 5. Determine whether or not the matrix A from examples 3 and 4 is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.

$$
A=\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

Ex. 6. Let the matrix A be as defined below. Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, or show that no such matrices exist.

$$
A=\left[\begin{array}{ccc}
0 & 4 & 2 \\
0 & -2 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

Additional Problems

Ex. 7. Consider the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 0 & -5 \\ 1 & 0 & 0\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, or show that no such matrices exist.
Ex. 8. Let A be the matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 2 & 0 \\ -6 & -1 & -3\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) Find a a basis of each eigenspace.
(c) Find a diagonal matrix D and an invertible matrix P such that $D=P A P^{-1}$, or show that no such matrices exist.

Ex. 9. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & 0 \\
-2 & 0 & 4
\end{array}\right]
$$

Find a basis for \mathbb{R}^{3} consisting of eigenvectors of A, or else prove that there is no such basis.
Ex. 10. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 5 & 0 \\
1 & 2 & 2
\end{array}\right]
$$

Is A diagonalizable? Why or why not?

Ex. 11. Let V be a finite-dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation. Prove that 0 is an eigenvalue of T if and only if the image (i.e., range) of T is not equal to V.
Ex. 12. Suppose that a 3×3 matrix A has 0 as an eigenvalue.
(a) What are the possible values of the rank of A ? Justify your answer.
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by $T(x)=A x$. Can T possibly be one-to-one? Can T be onto? Justify your answer.

Ex. 13. Let A, B be $n \times n$ matrices that commute, i.e. $A B=B A$. Let $v \in \mathbb{R}^{n}$ be an eigenvector of A such that $B v \neq 0$. Prove that $B v$ is also an eigenvector of A.

Ex. 14. Prove that if $T: V \rightarrow V$ is a linear map then the eigenspace E_{0} corresponding to the eigenvalue $\lambda=0$ is equal to $\operatorname{Ker}(T)$.

Ex. 15. Suppose that A is an $n \times n$ matrix that satisfies $A^{2}=I$, where I is the $n \times n$ identity matrix. Show that if λ is an eigenvalue of A then $\lambda=1$ or $\lambda=-1$.

Ex. 16. Let A be an $n \times n$ matrix and λ be an eigenvalue of A. Prove that λ^{m} is an eigenvalue of A^{m} for all integers $m \geq 1$.
Ex. 17. Let A be an $n \times n$ matrix and $\alpha \in \mathbb{R}$ be a scalar that is NOT an eigenvalue of A. Suppose that μ is an eigenvalue for the matrix $B=(A-\alpha I)^{-1}$ with corresponding eigenvector v. Prove that v is also an eigenvector for A and find a formula for the corresponding eigenvalue of A in terms of μ and α.

