5. Triple Integrals

(from Stewart, Calculus, Chapter 15)

z-Simple Regions

$$W = \{(x, y) \in D, \ z_1(x, y) \le z \le z_2(x, y)\}$$
$$\iiint_W f(x, y, z) \ dV = \iint_D \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \ dz \ dA$$

Finding Volume with a Triple Integral:

$$\mathrm{Volume}(W) = \iiint_W 1 \ dV.$$

Ex. 1. Evaluate the integral $\iiint_W z \ dV$ where W is the solid tetrahedron bounded by the four planes $x=0, \ y=0, \ z=0, \ \text{and} \ x+y+z=1.$

Cylindrical Coordinates (r, θ, z)

 (r,θ) are the polar coordinates of the projection (x,y) of the point (x,y,z) in the xy-plane, with $r\geq 0$

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$

$$r^2 = x^2 + y^2 \qquad \tan(\theta) = \frac{y}{x}$$

$$z = z$$

Triple Integrals in Cylindrical Coordinates:

$$\iiint_W f(x,y,z) \, dV = \int_{\theta_1}^{\theta_2} \int_{r_1(\theta)}^{r_2(\theta)} \int_{z_1(r,\theta)}^{z_2(r,\theta)} f(r\cos\theta, r\sin\theta, z) \, r \, dz \, dr \, d\theta.$$

Ex. 2. Find the volume of the region that is inside both the sphere $x^2 + y^2 + z^2 = 25$ and the cylinder $x^2 + y^2 = 9$.

Spherical Coordinates (ρ, θ, ϕ)

 $\rho \geq 0$ is the distance from the origin

 θ is the polar angle of the projection (x,y,0) in the xy-plane

 $0 \leq \phi \leq \pi$ is the angle of declination measured from the positive z-axis to \overline{OP}

$$x = \rho \sin(\phi) \cos(\theta)$$
 $y = \rho \sin(\phi) \sin(\theta)$ $z = \rho \cos(\phi)$

$$\rho^2 = x^2 + y^2 + z^2 \qquad \tan(\theta) = \frac{y}{x} \qquad \cos(\phi) = \frac{z}{\rho}$$

Triple Integrals in Spherical Coordinates:

$$\iiint_W f(x,y,z) \ dV = \int_{\theta_1}^{\theta_2} \int_{\phi_1}^{\phi_2} \int_{\rho_1(\theta,\phi)}^{\rho_2(\theta,\phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \ \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta.$$

Ex. 3. Evaluate $\iiint_W z \ dV$ where W is the region above the cone $x^2 + y^2 = z^2$ and below the sphere $x^2 + y^2 + z^2 = 4$ for $z \ge 0$.

Ex. 5. Let $F(x, y, z) = x^2 + y^2 + z^2$. Compute $\iiint_W \|\nabla F\| \ dV$ where W is the region $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}$.

Ex. 6. Evaluate the integral $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2+y^2) dz dy dx$

Ex. 7. Evaluate the integral $\iiint_W xy \ dV$ where W is the region bounded by $z = 9 - x^2 - y^2$, z = 0, $y = x^2$, and y = 1 for $y \ge x^2$.

Ex. 8. Use a triple integral to find the volume of the tetrahedron bounded by the four planes x = 0, z = 0, x = 2y, and x + 2y + z = 2. (*Challenge.*)

Ex. 9. Evaluate the integral $\iiint_W e^{(x^2+y^2+z^2)^{3/2}} dV$ where W is the unit ball $x^2+y^2+z^2\leq 1$.