5. Triple Integrals

(from Stewart, Calculus, Chapter 15)
z-Simple Regions
$W=\left\{(x, y) \in D, \quad z_{1}(x, y) \leq z \leq z_{2}(x, y)\right\}$
$\iiint_{W} f(x, y, z) d V=\iint_{D} \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) d z d A$

Finding Volume with a Triple Integral:
$\operatorname{Volume}(W)=\iiint_{W} 1 d V$.

Ex. 1. Use a triple integral to find the volume of the tetrahedron bounded by the four planes $x=0, z=0$, $x=2 y$, and $x+2 y+z=2$.
yz-plane xy-plane

$$
\begin{aligned}
V=\iiint_{W} 1 d V & =\int_{0}^{1} \int_{\frac{1}{2} x}^{1-\frac{1}{2} x}\left(\int_{0}^{2-x-2 y} 1 d z\right) d y d x \quad> \\
& =\int_{0}^{1}(2-x)(1-x)+(x-1) d x \\
& =\int_{0}^{1}\left(x^{2}-2 x+1\right) d x \\
& =\frac{1}{3} x^{3}-x^{2}+\left.x\right|_{0} ^{1}(2-x-2 y) d y d x \\
& =\int_{0}^{1}(2-x) y-\left.y^{2}\right|_{\frac{1}{2} x} ^{1-\frac{1}{2} x} d x \\
& =\frac{1}{3} \\
& =\int_{0}^{1}(2-x)(1-x)-\left(1-\frac{1}{2} x\right)^{2}+\left(\frac{1}{2} x\right)^{2} d x
\end{aligned}
$$

Ex. 2. Reverse the order of integration in the integral $\int_{0}^{1} \int_{0}^{x^{2}}\left(\int_{\substack{y=z}}^{y} f(x, y, z) d z\right) d y d x$. (Give all possibilities.)
Sketch

"top" is the plane $y=z$
"bottom" is the $x y$-plane
"back side"
$y=x^{2}$

$$
\begin{aligned}
& 0 \leq y \leq x^{2} \\
& 0 \leq x \leq 1
\end{aligned}
$$

$$
\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) d z d y d x=\int_{0}^{1} \int_{0}^{1}\left(\int_{0}^{y} f(x, y, z) d z\right) d x d y
$$

$$
y z \text {-plane }
$$

$0 \leq z \leq y$
$0 \leq y \leq x^{2}$
$0 \leq x \leq 1$

$$
\Rightarrow 0 \leq y \leq 1
$$

$$
\begin{aligned}
& \int_{0}^{1} \int_{z}^{1}\left(\int_{\sqrt{y}}^{1} f(x, y, z) d x\right) d y d z \\
& =\int_{0}^{1} \int_{0}^{1}\left(\int_{\sqrt{y}}^{1} f(x, y, z) d x\right) d z d y
\end{aligned}
$$

xz-plane $\quad y=0$

$$
\begin{aligned}
y & =z, y=x^{2} \\
& \Rightarrow z
\end{aligned}=x^{2}
$$

Triple Integrals in Cylindrical Coordinates:

$$
\iiint_{W} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}(\theta)}^{r_{2}(\theta)} \int_{z_{1}(r, \theta)}^{z_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

(r, θ) are the polar coordinates of the projection (x, y) of the point (x, y, z) in the $x y$-plane, with $r \geq 0$

$$
\begin{gathered}
x=r \cos (\theta) \quad y=r \sin (\theta) \\
r^{2}=x^{2}+y^{2} \quad \tan (\theta)=\frac{y}{x} \\
z=z
\end{gathered}
$$

Ex. 3. Find the volume of the region that is inside both the sphere $x^{2}+y^{2}+z^{2}=25$ and the cylinder $x^{2}+y^{2}=9$. radius 5 radius 3

Sketch
$x y$-plane
circle
 coors

$$
\begin{aligned}
V & =\iiint_{W} 1 d V \\
& \left.=\int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{\sqrt{55-r^{2}}} 1 r d z\right) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{3} 2 \sqrt{25-r^{2}} r d r d \theta \\
& =\left.4 \pi\left(-\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(25-r^{2}\right)^{3 / 2}\right|_{0} ^{3} \\
& =-\frac{4 \pi}{3}\left(10^{3 / 2}-25^{3 / 2}\right) \\
& =-\frac{4 \pi}{3}(64-125) \\
& =\frac{244 \pi}{3}
\end{aligned}
$$

$\underline{\text { Spherical Coordinates }}(\rho, \theta, \phi)$

$\rho \geq 0$ is the distance from the origin
θ is the polar angle of the projection $(x, y, 0)$ in the $x y$-plane
ϕ is the angle of declination measured from the positive z-axis to $\overline{O P}$

$$
\begin{array}{cc}
x=\rho \sin (\phi) \cos (\theta) & y=\rho \sin (\phi) \sin (\theta) \quad z=\rho \cos (\phi) \\
\rho^{2}=x^{2}+y^{2}+z^{2} & \tan (\theta)=\frac{y}{x} \quad \cos (\phi)=\frac{z}{\rho}
\end{array}
$$

Triple Integrals in Spherical Coordinates:

$$
\iiint_{W} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{\phi_{1}}^{\phi_{2}} \int_{\rho_{1}(\theta, \phi)}^{\rho_{2}(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Ex. 4. Evaluate $\iiint_{W} z d V$ where W is the region above the cone $x^{2}+y^{2}=z^{2}$ and below the sphere $x^{2}+y^{2}+z^{2}=4$ for $z \geq 0$.
radius 2

$$
=2 \pi \cdot 4 \int_{0}^{\pi / 4} \cos \phi \sin \phi d \phi
$$

For ϕ we need the cone angle.

$$
\begin{aligned}
\iiint_{W} z d V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left(\int_{\rho}^{2} \rho \cos \phi \rho^{2} \sin \phi d \rho\right) d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{1}{4} \rho^{4}\right|_{0} ^{2} \cos \phi \sin \phi d \phi d \theta
\end{aligned}
$$

$$
\Rightarrow y^{2}=z^{2}
$$

$$
=8 \pi \int_{0}^{\pi / 4} \frac{1}{2} \sin (2 \phi) d \phi \quad \frac{\text { Trig } 1 d}{\sin (2 x)=2 \sin x \cos x}
$$

$$
y= \pm z
$$ and $y^{2}+z^{2}=y$

$$
=\left.4 \pi\left(-\frac{1}{2}\right) \cos (2 \phi)\right|_{0} ^{\pi / 4}
$$

$$
=-2 \pi\left(\cos \left(\frac{\pi}{2}\right)-\cos (0)\right)
$$

$$
=2 \pi
$$

$$
\begin{aligned}
& \Rightarrow \tan \phi=1 \\
& \Rightarrow \phi=\frac{\pi}{4}
\end{aligned}
$$

Ex. 5. A solid region W lies within the cylinder $x^{2}+y^{2}=1$, below the plane $z=4$, and above the paraboloid $z=1-x^{2}-y^{2}$. Evaluate $\iiint_{W} \sqrt{x^{2}+y^{2}} d V$.

Ex. 6. Let $F(x, y, z)=x^{2}+y^{2}+z^{2}$. Compute $\iiint_{W}\|\nabla F\| d V$ where W is the region $\{(x, y, z) \in$ $\left.\mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$ 。

$$
\begin{aligned}
\nabla F & =\langle 2 x, 2 y, 2 z\rangle \\
\|\nabla F\| & =\sqrt{(2 x)^{2}+(2 y)^{2}+(2 z)^{2}}=2 \sqrt{x^{2}+y^{2}+z^{2}} \\
\iiint_{W}\|\nabla F\| d V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} 2 \sqrt{\rho^{2}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} 2 \rho^{3} \sin \phi d \rho d \phi d \theta \\
& =\left.2 \pi \int_{0}^{\pi} \frac{1}{2} \rho^{4}\right|_{0} ^{1} \sin \phi d \phi \\
& =\pi \int_{0}^{\pi} \sin \phi d \phi \\
& =-\left.\pi \cos \phi\right|_{0} ^{\pi} \\
& =2 \pi
\end{aligned}
$$

Ex. 7. Evaluate the integral $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) d z d y d x$

Ex. 8. Evaluate the integral $\iiint_{W} x y d V$ where W is the region bounded by $z=9-x^{2}-y^{2}, z=0, y=x^{2}$, and $y=1$. and $y=0$.

Ex. 9. Evaluate the integral $\iiint_{W} z d V$ where W is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$, and $x+y+z=1$.

Ex. 10. Evaluate the integral $\iiint_{W} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$ where W is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.

Ex. 7. Evaluate the integral $\int_{-2}^{2}\left(\int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\left(\int_{\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) d z\right) d y\right) d x$

$$
z=\sqrt{x^{2}+y^{2}} \Rightarrow z^{2}=x^{2}+y^{2}, z \geqslant 0 \text { upper calf }
$$

$$
\begin{aligned}
y= \pm \sqrt{4-x^{2}} & \Rightarrow y^{2}=4+x^{2} \Rightarrow x^{2}+y^{2}=y \text { circle } \\
\iiint_{D}\left(x^{2}+y^{2}\right) d A & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2} r^{2} r d z d r d \theta \\
& =2 \pi \int_{0}^{2} r^{3}(2-r) d r \\
& =2 \pi \int_{0}^{2}\left(2 r^{3}-r^{4}\right) d r \\
& =\left.2 \pi\left(\frac{1}{2} r^{4}-\frac{1}{5} r^{5}\right)\right|_{\partial} ^{2} \\
& =2 \pi\left(8-\frac{1}{5} \cdot 32\right) \\
& =\frac{16 \pi}{5}
\end{aligned}
$$

Ex. 8. Evaluate the integral $\iiint_{W} x y d V$ where W is the region bounded by $z=9-x^{2}-y^{2}, z=0, y=x^{2}$, and $y=1$. and $y=0$.

$$
z=9-\left(x^{2}+y^{2}\right)
$$

Ex. 9. Evaluate the integral $\iiint_{W} z d V$ where W is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$, and $x+y+z=1$.

$$
\begin{aligned}
\iiint_{W} z d V & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{-y}} z d z d y d x \\
& =\left.\int_{0}^{1} \int_{0}^{1-x} \frac{1}{2} z^{2}\right|_{0} ^{1-x-y} d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{1}{2}(1-x-y)^{2} d y d x \\
& =\left.\int_{0}^{1} \frac{-1}{6}(1-x-y)^{3}\right|_{0} ^{1-x} d x \\
& =\int_{0}^{1}-\frac{1}{6}\left(0^{3}-(1-x)^{3}\right) d x \\
& =\int_{0}^{1} \frac{1}{6}(1-x)^{3} d x \\
& =\frac{1}{24} \frac{1}{24}(1-x)^{4}
\end{aligned}
$$

Ex. 10. Evaluate the integral $\iiint_{W} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$ where W is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} e^{\left(\rho^{2}\right)^{3 / 2}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =2 \pi \int_{0}^{\pi} \int_{0}^{1} e^{\rho^{3}} \rho^{2} \sin \phi d \rho d \phi \\
& =2 \pi \int_{0}^{\pi} \frac{1}{3} e^{\left.\rho^{3}\right|_{0} ^{1} \sin \phi d \phi} \\
& =2 \pi \int_{b}^{\pi} \frac{1}{3}\left(e^{-1)} \sin \phi d \phi\right. \\
& =-\frac{2 \pi}{3}\left(e^{-1)} \cos \phi\right. \\
& =\frac{4 \pi}{3}\left(e^{-1)}\right.
\end{aligned}
$$

