5. Triple Integrals

(from Stewart, Calculus, Chapter 15)
z-Simple Regions
$W=\left\{(x, y) \in D, \quad z_{1}(x, y) \leq z \leq z_{2}(x, y)\right\}$
$\iiint_{W} f(x, y, z) d V=\iint_{D} \int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) d z d A$
$\underline{\text { Finding Volume with a Triple Integral: }}$
$\operatorname{Volume}(W)=\iiint_{W} 1 d V$.

Ex. 1. Evaluate the integral $\iiint_{W} z d V$ where W is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$, and $x+y+z=1$.
$\underline{\text { Cylindrical Coordinates }}(r, \theta, z)$

(r, θ) are the polar coordinates of the projection (x, y) of the point (x, y, z) in the $x y$-plane, with $r \geq 0$

$$
\begin{gathered}
x=r \cos (\theta) \quad y=r \sin (\theta) \\
r^{2}=x^{2}+y^{2} \quad \tan (\theta)=\frac{y}{x} \\
z=z
\end{gathered}
$$

Triple Integrals in Cylindrical Coordinates:
$\iiint_{W} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}(\theta)}^{r_{2}(\theta)} \int_{z_{1}(r, \theta)}^{z_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta$.

Ex. 2. Find the volume of the region that is inside both the sphere $x^{2}+y^{2}+z^{2}=25$ and the cylinder $x^{2}+y^{2}=9$.
$\underline{\text { Spherical Coordinates }}(\rho, \theta, \phi)$

$\rho \geq 0$ is the distance from the origin
θ is the polar angle of the projection $(x, y, 0)$ in the $x y$-plane
$0 \leq \phi \leq \pi$ is the angle of declination measured from the positive z-axis to $\overline{O P}$

$$
\begin{array}{cc}
x=\rho \sin (\phi) \cos (\theta) & y=\rho \sin (\phi) \sin (\theta) \quad z=\rho \cos (\phi) \\
\rho^{2}=x^{2}+y^{2}+z^{2} & \tan (\theta)=\frac{y}{x} \quad \cos (\phi)=\frac{z}{\rho}
\end{array}
$$

Triple Integrals in Spherical Coordinates:

$$
\iiint_{W} f(x, y, z) d V=\int_{\theta_{1}}^{\theta_{2}} \int_{\phi_{1}}^{\phi_{2}} \int_{\rho_{1}(\theta, \phi)}^{\rho_{2}(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Ex. 3. Evaluate $\iiint_{W} z d V$ where W is the region above the cone $x^{2}+y^{2}=z^{2}$ and below the sphere $x^{2}+y^{2}+z^{2}=4$ for $z \geq 0$.

Ex. 4. A solid region W lies within the cylinder $x^{2}+y^{2}=1$, below the plane $z=4$, and above the paraboloid $z=1-x^{2}-y^{2}$. Evaluate $\iiint_{W} \sqrt{x^{2}+y^{2}} d V$.

Ex. 5. Let $F(x, y, z)=x^{2}+y^{2}+z^{2}$. Compute $\iiint_{W}\|\nabla F\| d V$ where W is the region $\{(x, y, z) \in$ $\left.\mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$.

Ex. 6. Evaluate the integral $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) d z d y d x$

Ex. 7. Evaluate the integral $\iiint_{W} x y d V$ where W is the region bounded by $z=9-x^{2}-y^{2}, z=0, y=x^{2}$, and $y=1$ for $y \geq x^{2}$.

Ex. 8. Use a triple integral to find the volume of the tetrahedron bounded by the four planes $x=0, z=0$, $x=2 y$, and $x+2 y+z=2$. (Challenge.)

Ex. 9. Evaluate the integral $\iiint_{W} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$ where W is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.

