Multivariable Calculus: Review Session 4
6. Line Integrals
(from Stewart, Calculus, Chapter 16)
Vector Fields

A vector field is a function F' that assigns a vector F
to each point.

ﬁ(l‘,y) = (P(:c,y),Q(m,y))
ﬁ('r’yvz) = <P(x,y,z),Q(J;,y,z),R(m,y,z)}

Conservative / Gradient Vector Fields: F = Vf for

some f. The function f is called a potential for F.
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<~ Ex. F(z,y) = (2zy,2% — 3y?) is a gradient vector
field. A potential function is f(z,y) = 2%y — y>.

A gradient vector field F=v f is perpendicular to the
level sets f(x,y) = k of the potential.

Line Integrals of Vector Fields

Let #(t) = (z(t),y(t)), a <t < b be a parametrization

yA c : of a curve C.

l_
Line integral of F' along C"

/ﬁ-dF:/de+Qdy
C C

To compute:
di =ri(t)dt  de=a'(t)dt dy = y'(t)dt

/Cﬁ-dF: /abﬁ(F(t)) i (t) dt

Rmk. Similarly for vector fields of three variables.

0 Interpretation: The line integral of F along C is the
/ work performed by the force field in moving along C'.

Ex. 1. Evaluate the line integral [, 2* dz — xy dy where C is the arc 7(t) = (cos(t),sin(t)), 0 <t < 7/2.
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Ex. 2. Evaluate [y dx+ x* dy where
(a) C = C} is the line segment from (—4,—7) to (3,0).
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(b) C = Cy is the arc of the parabola y = 9 — 22 from (-4, —7) to (3,0).
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The Fundamental Theorem for Line Integrals. Let C be a smooth (or piecewise smooth) curve given
by the vector function 7(t), a < t < b. Let f be a differentiable function of two or three variables whose
gradient vector V f is continuous on C'. Then

Independence of Path: By the fundamental theorem, if F =V fis a
gradient vector field, then the line integral depends only on the endpoints
of C, not the path itself.

The figure at right shows the level sets of a function f(z,y) and its gradient
field. C, Cq, and Cy are three paths from the point P to the point Q.

/Vf~dF: Vf'dF:/ Vf-di=£(Q) — f(P)
C C Cs
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Ex. 3. Let F(x,y) = (3 + 2zy, 22 — 3y2).

(a) Show that the line integral | c F.dr depends only on the endpoints of the path C' and not on the path
taken between those endpoints.
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(b) Evaluate/ﬁ~d77 where C is the curve given by 7(t) = (e’ sint, e’ cost), 0 <t < .
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Ex. 4. Evaluate fc F - d7 where ﬁ(m,y, z) = (yz,xz,zy + 2z) and C is the line segment from (1,0, —2) to
(4,6,3).
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Green’s Theorem. Let C be a posmvely oriented, piecewise-smooth, simple closed curve in the plane and
let D be the region bounded by C. Let F(z,y) = (P(x,y), Q(x,y)) be a smooth vector field on D. Then

/de+Qdy—// (gf—?;) dA

Let C be a curve traversed once by 7(t) = (z(t), y(t)) for a <t <b.
C is closed if the initial and terminal points of C coincide, i.e.
7(a) = 7(b).

simple, not simple,

not closed not closed
C is simple if C has no self-intersections except at the endpoints, i.e.

F(tl) 7é F(tg) for all a < t; <ty < b.

C is positively oriented if it is traversed in the counterclockwise direc-

simple, not simple, tion as t increases from a to b. The region D is always to the left of
closed closed C.

Rmk. The line integral of a vector field along a curve depends on the orientation of the curve as follows:
If —C denotes the curve C traversed in the opposite direction, then ffc flz,y) de = — fc flz,y) dx.

Ex. 5. Evaluate / (3y — ™) da + (Tx 4+ \/y* + 1) dy where C is the circle 2% + y2 = 9 traversed in the
c
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Ex. 6. Evaluate [, y? dz + 3zy dy where C is the boundary of the region between the circles z? + y* = 1
and 22 + y? = 4 in the upper half plane, traversed counterclockwise.
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7. Let C be the triangle with vertices (0,0), (1,0), and (0,1), oriented counterclockwise and let
x,y) = (2°, zy).
According to Green’s Theorem, the line integral [ c F.di = /. c 23 dr+ 1y dy is equal to a certain double

integral. Set up and evaluate this double integral.
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(b) Verify Green’s Theorem by evaluating the line integral directly. . S? &4
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Ex. 8. Evaluate fcﬁ - di where F(z,y) = (zy?,22%y) and C is traced out by 7(t ) = (cos(t),2sin(t)) for

0<t< T,
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Ex. 9. Consider the vector field ﬁ(x, y) = (e3® + 2y, €3 — zy). Evaluate the integral/ﬁ~d7"whereCis

the unit circle 22 + y? = 1 oriented counterclockwise.
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Ex. 10. Evaluate fc F' - d7 where C is the union of line segment C; from (2,0,0) to (3,4,5) followed by the

vertical line segment Cy from (3,4,5) to (3,4,0) for the following vector fields F. S dx= Ry 1+ ol 2)
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