Multivariable Calculus: Review Session 4
 6. Line Integrals

(from Stewart, Calculus, Chapter 16)

Vector Fields

A vector field is a function \vec{F} that assigns a vector \vec{F} to each point.

$$
\begin{gathered}
\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle \\
\vec{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle
\end{gathered}
$$

Conservative / Gradient Vector Fields: $\vec{F}=\nabla f$ for some f. The function f is called a potential for \vec{F}.

Ex. $\vec{F}(x, y)=\left\langle 2 x y, x^{2}-3 y^{2}\right\rangle$ is a gradient vector field. A potential function is $f(x, y)=x^{2} y-y^{3}$.

A gradient vector field $\vec{F}=\nabla f$ is perpendicular to the level sets $f(x, y)=k$ of the potential.

Line Integrals of Vector Fields

Let $\vec{r}(t)=\langle x(t), y(t)\rangle, a \leq t \leq b$ be a parametrization of a curve C.

Line integral of \vec{F} along C :

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y
$$

To compute:

$$
d \vec{r}=\overrightarrow{r^{\prime}}(t) d t \quad d x=x^{\prime}(t) d t \quad d y=y^{\prime}(t) d t
$$

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \overrightarrow{r^{\prime}}(t) d t
$$

Rmk. Similarly for vector fields of three variables.
Interpretation: The line integral of \vec{F} along C is the work performed by the force field in moving along C.

Ex. 1. Evaluate the line integral $\int_{C} x^{2} d x-x y d y$ where C is the $\operatorname{arc} \vec{r}(t)=\langle\cos (t), \sin (t)\rangle, 0 \leq t \leq \pi / 2$.

Ex. 2. Evaluate $\int_{C} y d x+x^{2} d y$ where
(a) $C=C_{1}$ is the line segment from $(-4,-7)$ to $(3,0)$.
(b) $C=C_{2}$ is the arc of the parabola $y=9-x^{2}$ from $(-4,-7)$ to $(3,0)$.

The Fundamental Theorem for Line Integrals. Let C be a smooth (or piecewise smooth) curve given by the vector function $\vec{r}(t), a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$
\int_{C} \nabla f \cdot d \vec{r}=f(\vec{r}(b))-f(\vec{r}(a))
$$

Independence of Path: By the fundamental theorem, if $\vec{F}=\nabla f$ is a gradient vector field, then the line integral depends only on the endpoints of C, not the path itself.

The figure at right shows the level sets of a function $f(x, y)$ and its gradient field. C, C_{1}, and C_{2} are three paths from the point P to the point Q.

$$
\int_{C} \nabla f \cdot d \vec{r}=\int_{C_{1}} \nabla f \cdot d \vec{r}=\int_{C_{2}} \nabla f \cdot d \vec{r}=f(Q)-f(P)
$$

Ex. 3. Let $\vec{F}(x, y)=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle$.
(a) Show that the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ depends only on the endpoints of the path C and not on the path taken between those endpoints.
(b) Evaluate $\int_{C} \vec{F} \cdot d \vec{r} \quad$ where C is the curve given by $\vec{r}(t)=\left\langle e^{t} \sin t, e^{t} \cos t\right\rangle, 0 \leq t \leq \pi$.

Ex. 4. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y, z)=\langle y z, x z, x y+2 z\rangle$ and C is the line segment from $(1,0,-2)$ to $(4,6,3)$.

Green's Theorem. Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. Let $\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ be a smooth vector field on D. Then

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

not closed

simple,
closed

not simple, not closed

Let C be a curve traversed once by $\vec{r}(t)=\langle x(t), y(t)\rangle$ for $a \leq t \leq b$.
C is closed if the initial and terminal points of C coincide, i.e. $\vec{r}(a)=\vec{r}(b)$.
C is simple if C has no self-intersections except at the endpoints, i.e. $\vec{r}\left(t_{1}\right) \overline{\neq \vec{r}\left(t_{2}\right)}$ for all $a<t_{1}<t_{2}<b$.
C is positively oriented if it is traversed in the counterclockwise direction as t increases from a to b. The region D is always to the left of C.

Rmk. The line integral of a vector field along a curve depends on the orientation of the curve as follows: If $-C$ denotes the curve C traversed in the opposite direction, then $\int_{-C} f(x, y) d x=-\int_{C} f(x, y) d x$.

Ex. 5. Evaluate $\int_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y$ where C is the circle $x^{2}+y^{2}=9$ traversed in the counterclockwise direction.

Ex. 6. Evaluate $\int_{C} y^{2} d x+3 x y d y$ where C is the boundary of the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ in the upper half plane, traversed counterclockwise.

Ex. 7. Let C be the triangle with vertices $(0,0),(1,0)$, and $(0,1)$, oriented counterclockwise and let $\vec{F}(x, y)=\left\langle x^{3}, x y\right\rangle$.
(a) According to Green's Theorem, the line integral $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} x^{3} d x+x y d y$ is equal to a certain double integral. Set up and evaluate this double integral.
(b) Verify Green's Theorem by evaluating the line integral directly.

Ex. 8. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle$ and C is traced out by $\vec{r}(t)=\langle\cos (t), 2 \sin (t)\rangle$ for $0 \leq t \leq \frac{\pi}{2}$.

Ex. 9. Consider the vector field $\vec{F}(x, y)=\left\langle e^{3 x}+x y, e^{3 y}-x y\right\rangle$. Evaluate the integral $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the unit circle $x^{2}+y^{2}=1$ oriented counterclockwise.

Ex. 10. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the union of line segment C_{1} from $(2,0,0)$ to $(3,4,5)$ followed by the vertical line segment C_{2} from $(3,4,5)$ to $(3,4,0)$ for the following vector fields \vec{F}.
(a) $\vec{F}(x, y, z)=\left\langle y^{2}, 2 x y, 4 z\right\rangle$
(b) $\vec{F}(x, y, z)=\langle y, z, x\rangle$

