Multivariable Calculus: Review Session 4 6. Line Integrals (from Stewart, *Calculus*, Chapter 16)

(from Stewart, Ca

Vector Fields

A <u>vector field</u> is a function \vec{F} that assigns a vector \vec{F} to each point.

$$\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$$

$$\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$$

Conservative / Gradient Vector Fields: $\vec{F} = \nabla f$ for some f. The function f is called a potential for \vec{F} .

Ex. $\vec{F}(x,y) = \langle 2xy, x^2 - 3y^2 \rangle$ is a gradient vector field. A potential function is $f(x,y) = x^2y - y^3$.

A gradient vector field $\vec{F} = \nabla f$ is perpendicular to the level sets f(x, y) = k of the potential.

Line Integrals of Vector Fields

Let $\vec{r}(t) = \langle x(t), y(t) \rangle$, $a \le t \le b$ be a parametrization of a curve C.

Line integral of \vec{F} along C:

$$\int_C \vec{F} \cdot d\vec{r} = \int_C P \, dx + Q \, dy$$

To compute:

$$d\vec{r} = r'(t)dt \qquad dx = x'(t)dt \qquad dy = y'(t)dt$$

$$\int_C \vec{F} \cdot d\vec{r} = \int_a \vec{F}(\vec{r}(t)) \cdot \vec{r'}(t) dt$$

Rmk. Similarly for vector fields of three variables.

Interpretation: The line integral of \vec{F} along C is the work performed by the force field in moving along C.

Ex. 1. Evaluate the line integral $\int_C x^2 dx - xy dy$ where C is the arc $\vec{r}(t) = \langle \cos(t), \sin(t) \rangle, 0 \le t \le \pi/2$.

Ex. 2. Evaluate $\int_C y \, dx + x^2 \, dy$ where (a) $C = C_1$ is the line segment from (-4, -7) to (3, 0).

(b) $C = C_2$ is the arc of the parabola $y = 9 - x^2$ from (-4, -7) to (3, 0).

The Fundamental Theorem for Line Integrals. Let C be a smooth (or piecewise smooth) curve given by the vector function $\vec{r}(t)$, $a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

Independence of Path: By the fundamental theorem, if $\vec{F} = \nabla f$ is a gradient vector field, then the line integral depends only on the endpoints of C, not the path itself.

The figure at right shows the level sets of a function f(x, y) and its gradient field. C, C_1 , and C_2 are three paths from the point P to the point Q.

$$\int_C \nabla f \cdot d\vec{r} = \int_{C_1} \nabla f \cdot d\vec{r} = \int_{C_2} \nabla f \cdot d\vec{r} = f(Q) - f(P)$$

Ex. 3. Let $\vec{F}(x,y) = \langle 3 + 2xy, x^2 - 3y^2 \rangle$.

(a) Show that the line integral $\int_C \vec{F} \cdot d\vec{r}$ depends only on the endpoints of the path C and not on the path taken between those endpoints.

(b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve given by $\vec{r}(t) = \langle e^t \sin t, e^t \cos t \rangle, \ 0 \le t \le \pi$.

Ex. 4. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y, z) = \langle yz, xz, xy + 2z \rangle$ and C is the line segment from (1, 0, -2) to (4, 6, 3).

Green's Theorem. Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. Let $\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ be a smooth vector field on D. Then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

Let C be a curve traversed once by $\vec{r}(t) = \langle x(t), y(t) \rangle$ for $a \leq t \leq b$.

C is closed if the initial and terminal points of C coincide, i.e. $\vec{r}(a) = \vec{r}(b)$.

C is simple if C has no self-intersections except at the endpoints, i.e. $\vec{r}(t_1) \neq \vec{r}(t_2)$ for all $a < t_1 < t_2 < b$.

C is <u>positively oriented</u> if it is traversed in the counterclockwise direction as t increases from a to b. The region D is always to the left of C.

Rmk. The line integral of a vector field along a curve depends on the orientation of the curve as follows: If -C denotes the curve C traversed in the opposite direction, then $\int_{-C} f(x, y) dx = -\int_{C} f(x, y) dx$.

Ex. 5. Evaluate $\int_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$ where C is the circle $x^2 + y^2 = 9$ traversed in the counterclockwise direction.

Ex. 6. Evaluate $\int_C y^2 dx + 3xy dy$ where C is the boundary of the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ in the upper half plane, traversed counterclockwise.

Ex. 7. Let C be the triangle with vertices (0,0), (1,0), and (0,1), oriented counterclockwise and let $\vec{F}(x,y) = \langle x^3, xy \rangle$.

(a) According to Green's Theorem, the line integral $\int_C \vec{F} \cdot d\vec{r} = \int_C x^3 dx + xy dy$ is equal to a certain double integral. Set up and evaluate this double integral.

(b) Verify Green's Theorem by evaluating the line integral directly.

Ex. 8. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y) = \langle xy^2, x^2y \rangle$ and C is traced out by $\vec{r}(t) = \langle \cos(t), 2\sin(t) \rangle$ for $0 \le t \le \frac{\pi}{2}$.

Ex. 9. Consider the vector field $\vec{F}(x,y) = \langle e^{3x} + xy, e^{3y} - xy \rangle$. Evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$ where C is the unit circle $x^2 + y^2 = 1$ oriented counterclockwise.

Ex. 10. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the union of line segment C_1 from (2,0,0) to (3,4,5) followed by the vertical line segment C_2 from (3,4,5) to (3,4,0) for the following vector fields \vec{F} . (a) $\vec{F}(x,y,z) = \langle y^2, 2xy, 4z \rangle$ (b) $\vec{F}(x,y,z) = \langle y, z, x \rangle$