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Abstract 

The market for biomedical R&D suffers from underinvestment as a consequence of 

its scale, time horizon, and risk.  The megafund has been introduced as a potential solution 

to this market failure via the provision of large-scale financing and a market for 

diversification, effectively serving to alleviate scale misalignment and improve the 

efficiency of biomedical capital markets.  Orphan drugs are particularly suitable for 

portfolio financing due to pathological characteristics which increase the rate of regulatory 

approval and decrease the correlation between projects.  Application of the megafund 

model to orphan drug development thus has the potential to mitigate information 

asymmetry problems in biomedical capital markets and stimulate R&D investment.   

These predictions, however, are obscured by the increasingly probable scenario of 

government intervention.  Empirical analyses suggest that price controls on pharmaceutical 

drugs would reduce R&D spending by lowering the expected returns to such investment.  

Thus, megafund financing and free-market intervention have competing effects on the 

equilibrium level of biomedical R&D investment.  The following paper explores this 

relationship and the relative magnitude of each component.  I begin by expanding the 

existing megafund theoretical framework to better represent the realities of orphan drug 

development.  I then analyze the megafund’s performance in statistical simulations under 

two price control regimes.  I find that price controls do not materially influence the default 

rate on debt securities, but lead to a 25 – 70% decline in equity returns on average.  The 

decline in performance is significantly larger under a fixed, multidimensional price control 

regime as opposed to a variable, unidimensional regime, and thus may carry implications 

for optimal drug pricing policy. 
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1. Introduction 

Capital markets channel savings and investment between individual investors 

(lenders) and firms, governments, etc. (borrowers) through the transaction of debt and 

equity instruments.  The transfer of capital is essential for generating economic output and 

growth, and thus, capital markets are a vital component of any economy.  A breadth of 

economic research has documented the prevalence of information asymmetry problems in 

capital markets.  From a macroeconomic perspective, the primary consequence of 

information asymmetry within such markets is an inefficient allocation of capital.   

Like all markets, biomedical capital markets, in which capital is allocated to drug 

research and development (R&D) projects, exhibit these same problems.  Their magnitude, 

however, is amplified by the nature of drug development.  Rising costs and lengthening 

development periods have increased the risks associated with drug development, 

contributing to a ‘productivity crisis in pharmaceutical R&D’ (Pammolli et al. 2011).  

Average pre-approval costs per new drug have risen to $2.6 billion, while clinical 

development periods have stagnated between 6 – 8 years with a meager 12% approval rate 

(DiMasa et al. 2016, PhRMA 2015).    Because of the investment size and associated 

uncertainty, information asymmetry problems are exacerbated in biomedical capital 

markets.  These market imperfections increase the cost of external capital, which precludes 

some firms from participating in public capital markets.  Ultimately, the result is an 

aggregate underinvestment in drug research and development.   

While market interventions, such as the establishment of specialized investors, 

have served as piecemeal solutions, a market failure persists.  This failure, specifically, is 

the misalignment of investment scale and consequent lack of diversification capacity.  
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Drug development requires significant upfront capital, and thus, it is difficult for any single 

investor to hold a portfolio of investments in drug development programs.  Consequently, 

R&D underinvestment persists because investors are unable to sufficiently diversify the 

idiosyncratic risk associated with biomedical investment.  Empirical evidence corroborates 

this claim.  Approved new molecular entities (NMEs) have experienced average annual 

declines since the mid-1990s, with 22 approvals in 2016 marking a six-year low (Hirschler 

2017).  Lagging productivity has exerted downward pressure on market valuations, 

ultimately leading to capital outflows and the persistence of suboptimal investment levels.  

Fernandez et al. (2012) propose a solution to this market failure in the form of a 

biomedical megafund.  The megafund utilizes diversification and securitization to develop 

a portfolio-financed investment vehicle through which investors can spread idiosyncratic 

risk across numerous drug development programs.  Further, the megafund provides large-

scale financing to biomedical R&D, effectively serving to mediate scale mismatch, lower 

transaction costs, and improve the efficiency of biomedical capital markets.   

Fagnan et al. (2014) specify the megafund framework to orphan drugs exclusively.  

Orphan drugs are developed to treat rare diseases and possess several characteristics that 

make them exceptionally suitable for the megafund model.  Despite these characteristics, 

though, orphan drugs have not traditionally received significant R&D investment.  Despite 

countless medical breakthroughs over the past century, hundreds of rare diseases still exist 

as ‘untreatable,’ which is largely a result of the privatization of drug development and the 

supply-demand framework that informs firms’ R&D decisions.  Because resources for 

pharmaceutical R&D are scarce, decisions must be made to maximize profit opportunities.  

Thus, historically, disease severity and quantity afflicted have guided resource allocation: 
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the most serious diseases affecting the largest patient populations have received the 

greatest proportion of resources, and so on (Rhode 2000).   

Rare diseases, meanwhile, are inherently characterized by limited patient 

populations and quantitatively limited demand, and thereby fail to provide sufficient 

incentives for R&D investment.  Thus, rare diseases historically remained ‘orphaned’ 

because of their preclusion from R&D investment.  While the behavior of firms was 

rational in this context, a perceived market failure had developed: absent additional 

economic and/or regulatory incentives, the pharmaceutical industry would continue to 

neglect rare diseases while more than five million afflicted Americans would continue to 

suffer inexorably (Rhode 2000).  In response, the U.S. government intervened in the 

market, and in 1973, the Orphan Drug Act was signed into law. 

The Orphan Drug Act (ODA) formally defines orphan drugs as ‘pharmaceutical 

treatments for diseases that affect fewer than 200,000 U.S. inhabitants’.  The Act provides 

several financial incentives to encourage the development of orphan drugs, and by all 

accounts, it has been a powerful driver of drug development for rare, traditionally-

neglected diseases.  In the decade preceding the passage of the ODA, only ten orphan 

drugs were approved for use in the United States (Rhode 2000).  Since then, more than 300 

orphan drugs have been approved while an additional 2000 candidates have been granted 

orphan drug designations (Wellman-Labadie and Zhou 2010).  Between 2000 and 2010, 

the compound annual growth rate (CAGR) of orphan drug approvals was ~10%, in contrast 

to a negative CAGR for non-orphan approvals over the same period (Meekings et al. 

2010).   
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On the other hand, some ODA incentives have been condemned for enabling firms 

to engage in price gouging behaviors (Garber 1994).  Commonly cited are the orphan 

drugs Cosmegon, Indocin I.V., and Acthar, which increased in price by 3,436%, 1,389%, 

and 1,310%, respectively, between 1998 and 2008 (Hemphill 2010).  More recently, 

Marathon Pharmaceuticals became the exemplar for such behavior after placing an 

$89,000 price tag on its newly approved muscular dystrophy drug.  In addition to 

egregious prices, proponents of government intervention often cite the abuse of orphan 

drug status for a single drug across several disease indications.  For example, as of 2008, 

only 4 of the 18 blockbuster drugs1 solely approved as orphan drugs had a single 

therapeutic use.  In this case, it is possible that initially unprofitable drugs reach 

‘blockbuster status’ by treating multiple orphan disease niches, effectively increasing the 

drug’s patient population while preserving its monopoly pricing privileges (Wellman-

Labadie and Zhou 2010).  Although such examples are rare, they have contributed to a 

growing public perception of abuse and exploitation, and have thrust orphan drugs into the 

wider debate concerning drug pricing and healthcare provision.   

In developed countries like the United States, the pharmaceutical industry is unique 

in that a third-party healthcare provider, such as a private health insurer or a government 

agency, directly pays for at least a fraction of the consumer’s prescription drug 

expenditures (Hemphill 2010).  While the U.S. government pays for more than 40% of 

total healthcare expenditures, it does so through several uncoordinated programs, which 

impedes its ability to exert market power to negotiate prices.  As such, both the public and 

private sectors act as price takers, and thus price consideration has not traditionally been a 

                                                
1 A blockbuster drug is defined as any pharmaceutical product which exceeds $1 billion in annual 
sales. 
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priority in the U.S. pharmaceutical market (Garber 1994).  Indeed, it is oft speculated that 

the pricing discretion granted to private drug developers and the U.S.’s status as a world 

leader in medical innovation share a causal relationship.  As such, drugs have traditionally 

been considered ‘priceless goods’ to ensure the development of novel therapeutics and 

their dissemination to the masses (Maitland 2002).   

Recent sociopolitical developments, however, contradict this perspective.  Public 

rhetoric for government intervention has reached a crescendo in response to drug price 

increases and swelling healthcare expenditures.  Pharmaceutical productivity has 

plummeted while drug price inflation has far outpaced the CPI.  Average prices of brand-

name drugs have increased by 164% since 2008.  In 2015 alone, prescription drugs 

received an average price increase of 16.2% and aggregate U.S. drug spending rose by 

5.2% (Express Scripts 2016).  In response, public sentiment has shifted in favor of 

government intervention – a 2016 survey found that 78% of respondents favored drug 

price controls (Rau 2016).   

Because orphan drugs tend to be among the most expensive, they have been 

inextricably entwined in discussions regarding the industry’s pricing practices.  Given the 

combination of perceived commercial and ethical abuse, shifting public sentiment against 

the pharmaceutical industry, and a Republican majority under the Donald Trump 

administration, government intervention is becoming increasingly likely.  While any 

potential legislation would likely target drug prices more broadly, orphan drugs would be 

disproportionately affected because of their inherently high prices.   

If the detrimental effects of price controls on R&D investment outweigh the 

incentives conferred by the ODA, government intervention could carry significant 
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ramifications for orphan drug development going forward.  Such ramifications could 

extend to drug development more broadly if the costs of government intervention similarly 

outweigh the general benefits of portfolio financing.  To explore this possibility and 

illustrate the long-run implications, I analyze the effects of government-imposed price 

controls on the megafund model.  I begin by evaluating the effect of price controls on 

historical pharmaceutical R&D levels within several models.  Secondly, I incorporate the 

financial incentives mandated by the ODA within an illustrative megafund model, 

something Fagnan et al. (2014) fail to do.  I then use a mathematical example to 

demonstrate how the benefits of portfolio financing for orphan drugs may exceed those of 

non-orphan drugs.  I continue this analysis by considering the impact of proposed price 

regulations within the megafund framework.  Finally, I simulate the performance of an 

orphan drug megafund under the constraints of price controls.  I find that the megafund 

proves resilient to a moderate level of price regulation.  Price controls do not materially 

influence the megafund’s default rate on debt securities, but lead to a 25 – 70% decline in 

equity returns on average.  I conclude by considering the policy implications these results 

may carry.  

The remainder of the paper is organized as follows.  Chapter 2 establishes the 

financial theory underlying the megafund model.  Chapter 3 analyzes the relationship 

between price controls and R&D investment.  Chapter 4 expands the existing megafund 

framework to include ODA incentives.  Chapter 5 outlines the price control simulations.  

Chapter 6 presents the results of those simulations.  Chapter 7 discusses the findings and 

their implications.  Chapter 8 concludes. 
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2. Literature Review 

2.1 Research & Development Investment 

Economic theory has long propagated the belief that innovation is difficult to 

finance in a perfectly competitive capital market.  First proposed by Nelson (1959) and 

Arrow (1962), and summarized by Hall and Lerner (2009), economic theory argues that 

the knowledge produced by innovation is a non-rival good, and as such, the use of that 

information cannot be restricted by the firm undertaking the capital investment to produce 

it.  Thus, the incentives for firms to invest are diminished, which ultimately generates a 

socially suboptimal equilibrium level of R&D investment.   

Market interventions, such as the protection of intellectual property through 

patents, R&D tax incentives, government funding, etc., have successfully combatted these 

problems.  For example, Bloom et al. (2001) found that a 10% R&D tax credit led to a 

10% increase in long-run R&D investment, while Varsakelis (2001) found that patent 

protection is a universally strong determinant of R&D intensity. 

However, Hall (2009) proposes an additional market failure contributing to R&D 

underinvestment: the ‘wedge’ between the cost of capital from external financing sources 

and the private rate of return required by the firm undertaking the project.  It is possible 

that the external cost of capital, the minimum return required to compensate third party 

investors, exceeds the private rate of return, the internal rate of return (IRR) at which a 

project’s net present value (NPV) is equal to zero.  Thus, some projects, despite possessing 

a positive NPV within a private financing structure, will not attract external investment.  

The underpinning to this ‘wedge’ derives from the traditional components of information 

asymmetry.  In R&D markets, asymmetry between the researchers’ and the investors’ 



 

8 
	

knowledge of the probability of success for a given project may contribute to the 

development of an orthodox Akerlof (1970) ‘lemons market’ in which adverse selection 

problems drive the least risky investments out of the market.  Further, the separation of 

firm management and ownership, as is standard among modern industrial firms, may 

contribute to moral hazard and principal-agent problems.   

Together, these asymmetry problems increase the cost of external capital, which 

precludes some firms from participating in public capital markets.  This phenomenon has 

been supported empirically by analyzing the liquidity constraints of firms with respect to 

R&D investment.  If innovative firms were financially constrained, Brown and Haegler 

(1997) argue, then their R&D expenditures should be highly correlated with fluctuations in 

internal finances.  Indeed, findings from both Hall (1992) and Brown and Haegler (1997) 

exhibit a significant positive correlation between cash flows and R&D investment, 

particularly amongst innovative firms, suggesting that imperfect public markets may 

constrain firms to internal funding sources.  

The aforementioned market failure is particularly acute for innovation-focused 

firms like those I consider.  The private sector has developed a solution in the form of 

venture capital (VC), which are privately-managed capital funds specializing in equity 

investments in high-growth firms.  The literature has exhaustively outlined venture 

capitalists’ potential to address information asymmetry problems via extensive screening, 

active monitoring, exit incentives, and investment staging (Hall 2009).  Indeed, the success 

of the venture capital industry has been convincing.  Bernstein et al. (2016) find that, on 

average, heavy VC involvement leads to a 3.1% increase in produced patents by portfolio 

companies and a 1.4% increase in the probability of a successful exit. 



 

9 
	

While venture capital successfully remediates the information asymmetry problems 

in many such capital markets, I argue that, due to the investment scale and management 

required for drug development, venture capital only serves to mitigate this market failure.  

Drug development is risky and requires investment upfront while the returns are 

unpredictable and volatile.  Drug development, therefore, is perceived by investors to be 

among the riskiest sectors in the economy.  Consequently, biomedical technology is treated 

differently by private sector investors like venture capitalists.  Previous studies have 

documented the difference in selection criteria employed by VCs when considering a non-

technology-based proposal vs. a technology-based proposal.  For instance, UK venture 

capitalists require higher hurdle rates for technology-based proposals2 (Lockett et al. 

2002).  Further, several VCs have been documented to exclude biotechnology proposals 

out of principle, citing regulatory difficulties, financing size, and exit uncertainty (Baeyens 

et al. 2006).  Ultimately, these investment strategies have been justified, as life-sciences 

venture capital investments generated an average return of -1% between 2001 and 2010 

(Fernandez et al. 2012).  Such observations indicate that, despite venture capitalists’ ability 

to mediate information asymmetry problems, underinvestment in drug development 

persists. 

2.2 Portfolio Financing – A Generalized Solution 

2.2.1 Diversification and Portfolio Theory 

Before delving into the specifics of the megafund model, it is important to note the 

statistical principle on which it is built: diversification.  Cecchetti and Schoenholtz (2015) 

                                                
2 The hurdle rate for an investment represents the potential return threshold beyond which a proposal is 
considered attractive. 
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outline the basic framework.  Consider an equally weighted portfolio of n assets, the 

expected return remains the same regardless of the value of n: 𝐸 𝑃 = 𝑤%𝐸(𝑥%))
%*+ .  The 

variance of the portfolio’s return, however, depends on the value of n: 

𝑉𝑎𝑟 𝑃 = 𝑤%/𝑉𝑎𝑟 𝑥% + 𝑤%𝑤1𝐶𝑜𝑣(𝑥%, 𝑥1))
1*%6+

)
%*+

)
%*+   

Since we are considering an equally weighted portfolio, wi = wj = 1/n.  If we define 

𝜎89 as the average covariance among all assets within the portfolio, then: 

𝑉𝑎𝑟 𝑃 = +
)
𝑉𝑎𝑟 𝑥% + ):+

)
𝜎89  

And thus, as the number of assets, n, increases: lim
)→?

𝑉𝑎𝑟 𝑃 = 𝜎89 

This decomposition carries a powerful implication which is central to the megafund 

model: for portfolios holding many assets, the variance of the portfolio tends to converge 

to the average covariance between the assets.  In the case of orphan drugs, the benefits of 

this implication may exceed that of the average asset.  Orphan diseases tend to exhibit 

monogenic pathology, meaning they are caused by an anomaly in a single gene.  As such, 

we can safely assume that the biological mechanisms utilized by their treatments will tend 

to be unrelated, and thus, that the covariance between orphan drug development programs 

is modest.  Mathematically, this implies that as the as the number assets in the portfolio, n, 

increases, Var(P) will unambiguously converge to a small value. 

2.2.2 Securitization 

Securitization uses financial engineering to transform an illiquid asset, such as a 

group of loans, into a security.  The process typically involves two steps.  First, the 

originator, the owner of the assets to be securitized, pools the assets and transfers them to 

an issuer, which often takes the form of a special purpose vehicle (SPV), an independent 

legal entity which is restricted from any activity beyond owning and servicing the 
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securitized assets (Jobst 2008).  Second, the SPV finances its acquisition of the assets by 

issuing securities collateralized by the assets’ cash flows (Fabozzi and Kothari 2008).  The 

portfolio is often sliced into several tranches which are sold separately and correspond to 

different maturities or levels of risk (Jobst 2008).  Securitization, therefore, provides 

financing to the originator while generating interest and principal payments for investors 

corresponding to their specific risk-reward preferences (Telpner 2003). 

 In the wake of the 2007 financial crisis, asset-backed securitization has experienced 

intense scrutiny.  Several studies have documented the role of securitization in encouraging 

lax lending standards which contributed, in part, to the credit crisis (Drucker and Mayer 

2008, Nadauld and Sherlund 2009, Keys et al. 2010).  Provided responsible oversight and 

regulation, however, securitization offers benefits both for creditors and the wider 

economy.   

Most importantly, securitization lowers the cost of borrowing.  Securitization 

allows the separation of financial assets from the credit risk of the originator, and thus the 

resulting securities are often of a higher credit quality than the secured debt of the 

originator itself (Jobst 2008, Fabozzi and Kothari 2008).  In addition, securitized assets are 

more liquid than the assets underlying them, and therefore carry less of a liquidity 

premium.  For both reasons, securitization enables the movement of investment capital 

from debt markets to more efficient capital markets, resulting in lower funding costs (Jobst 

2008).  For instance, several studies have concluded that the securitization of residential 

mortgages has lowered the interest rates paid by borrowers (Jameson et al. 1990, Sirmans 

and Benjamin 1992).   
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Ultimately, securitization lowers the cost of credit and expands financial markets, 

both of which contribute to economic growth.  Because of these benefits, the use of 

securitization has expanded to a plethora of financial assets, including student and auto 

loans, credit card receivables, litigation settlement payments, and cash flows from oil 

reserves (Iacobucci and Winter 2005).  A particularly poignant example of securitization’s 

expansion was the issuance of $100 million of bonds by Yale University collateralized by 

a royalty interest and licensing agreement between the University and Bristol-Myers 

Squibb based on a pharmaceutical patent (Kramer and Patel, n.d.).  Thus, the securitization 

of intellectual property like drug development programs is quite plausible.  Indeed, the 

precedent has been set and reinforced many times over.   

2.2.3 The Biomedical Megafund 

The megafund model, as first proposed by Fernandez et al. (2012), is designed to 

couple diversification and securitization to reduce the cost of borrowing for drug 

developers and deliver large-scale financing to biomedical capital markets.  The megafund 

consists of two interdependent components: (1) The creation of a diversified portfolio of 

drug development projects; and (2) The use of securitization to structure the portfolio’s 

financing as a combination of equity and debt.  In this case, Fernandez et al. (2012) 

propose the use of future cash flow securitization, in which financial interests in drug 

development projects and their associated intellectual property are used to collateralize 

debt instruments called Research-Backed Obligations (RBOs).  The megafund, in this 

process, takes the form of a special purpose vehicle (SPV), an independent legal entity 

through which the assets are purchased and the securities are issued.  The development of 

RBOs with attractive risk-reward profiles, though, necessitates scale.  Diversification, in 
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turn, reduces portfolio risk to the extent that the megafund can raise funds by issuing both 

equity and debt.  Finally, the size of the debt market relative to the equity market enables 

the megafund to raise capital at the scale necessary to achieve sufficient diversification.  

Thus, the two components share a complementary relationship. 

Fernandez et al. (2012) use a dataset of 733 anti-cancer drugs which entered 

clinical trials between 1990 and 2011 to execute simulations that test the efficacy of the 

megafund model.  The researchers complete two 7.5-year simulations: (1) a portfolio with 

$5 billion of initial capital (2x leverage) consisting of 100 preclinical and 100 Phase I 

compounds; and (2) a portfolio with $15 billion of initial capital (2.5x leverage) consisting 

of 100 Phase II compounds.  In both cases, the financial structure of the portfolio consists 

of three components: (1) Equity; (2) a senior RBO tranche which pays a 5% annual 

coupon; and (3) a junior RBO tranche which pays an 8% annual coupon.  The researchers 

find that the megafund is almost always profitable.  Specifically, the megafund yields 

returns of 8.9 – 11.4% and 5 – 8% for equity investors and RBO investors, respectively, 

while the rate of full RBO payment exceeds 99%.  In comparison, an all-equity megafund 

generates a comparable risk profile and yields average returns of only 7.2%. 

2.2.4 The Orphan Drug Megafund 

Fagnan et al. (2014) build on the results of Fernandez et al. (2012) by applying the 

megafund model to orphan drugs.  In their own simulations, the researchers use a large-

molecule drug data set to simulate a megafund of parallel tranche structure as Scenario 1 in 

Fernandez et al. (2012), but with only $575 million in initial capital and a target portfolio 

of 10 – 20 projects.  Consistent with previous analyses, the megafund yielded average 
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returns of 13.4% for equity investors, while the rate of full RBO payment again exceeded 

99%. 

These results carry a significant implication: an orphan drug megafund can achieve 

attractive returns with significantly less scale, which mitigates the operational challenges to 

the cancer megafund proposed by Fernandez et al. (2012).  Fagnan et al. (2014) suggest 

multiple characteristics of orphan drugs which make them particularly suitable for 

portfolio financing and may explain the intuition behind their results.  Firstly, orphan 

diseases are generally caused by individual genetic mutations (termed ‘monogenic 

pathology’) and act through unrelated biological mechanisms.  Consequently, the 

pharmacological functions of orphan drugs tend to be unrelated, and thus, the success or 

failure of individual orphan drug development projects is unlikely to be correlated across 

diseases (Maher 2008).  Further, again attributable to monogenic pathology, orphan drug 

development enjoys a significantly higher rate of success than that for more complex 

disease fields like neurodegeneration or oncology (Fagnan et al. 2014).  Once the 

underlying genetic defect has been identified, the development of a targeted therapy is 

relatively straightforward.  As such, the regulatory success rate of orphan compounds far 

exceeds that of non-orphan compounds.  For drugs entering clinical testing between 2003 

and 2011, the probability of FDA approval for orphan candidates was 23% while it was 

merely 15% for non-orphan candidates (Hay et al. 2014).  Secondly, orphan drugs’ small 

patient populations are often compensated for large per-patient revenues.  Therefore, 

orphan drugs tend to generate lifetime revenues comparable to those of non-orphan 

therapies.  For example, between 2000 and 2010, the same percentage (29%) of newly 

approved orphan and non-orphan drugs achieved blockbuster status (Thomson Reuters 



 

15 
	

2012).  Finally, orphan drug developers receive a host of financial and regulatory 

incentives as stipulated by the ODA, which are further discussed in Chapter 4. 

3. The Effect of Price Controls on Pharmaceutical R&D 

From an ethical perspective, the morally optimal pricing regime is that which relieves 

the most suffering and saves the most lives.  This ethical framework is consistent with both 

Rawls’ Difference Principle, in which the utility of society’s worst-off is maximized, and 

Utilitarianism, in which society’s sum utility is maximized (Maitland 2002).  In such a 

society, any systematic exclusion from pharmaceutical care both violates the principles of 

fairness and results in a suboptimal level of utility (Hemphill 2010).  Price regulation, 

Maitland (2002) argues, would oppose these ethical goals.  Within a market economy, 

binding regulation of prices reduces investment in that industry or product.  Because price 

controls would reduce expected returns, pharmaceutical R&D investment would decline, 

resulting in the development of fewer products – today’s profits are tomorrow’s drugs 

(Maitland 2002).  Price regulation, though, may appear attractive myopically because its 

benefits are observed immediately while its costs are deferred.  Such a situation can be 

represented graphically via an Access-Innovation Frontier, as shown in Figure 3.1. 

         

Even within a regulatory regime in which drug producers are forced to supply 

products below their average total cost, firms will continue to produce in the short-run 

Figure 3.1 
Access-Innovation Frontier 
(Vernon and Golec 2008) 
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because most of their costs are sunk.  In the long-run, however, firms will invest until the 

expected marginal efficiency of investment (MEI) is equal to the firm’s marginal cost of 

capital (MCC).  This market equilibrium can be visualized within a basic supply-demand 

framework, in which the downward sloping MEI curve represents the aggregation of the 

expected return for each individual project while the upward sloping MCC curve 

represents the supply price of investment funds at the margin (Vernon 2005).  Expected 

profits and lagged cash flows are the principal determinants of firms’ sales-to-R&D ratios 

(Grabowski and Vernon 2000, Scherer 2001, Lichtenberg 2001).  Thus, price controls 

influence firm investment through two primary channels: (1) By reducing the firm’s 

expected returns to R&D (Figure 3.2); and (2) By limiting the supply of capital, also 

referred to as a ‘cash-flow effect’ (Figure 3.3) (Vernon 2005).   

 

              

Ceteris paribus, price controls will reduce the expected profitability of any given 

investment project, resulting in a leftward shift in the MEI curve.  Further, price controls 

will limit the lagged profitability of the firms themselves, and thus the supply of funds for 

Figure 3.2 
Price controls lower the expected 

returns to R&D, leading to a decline 
in equilibrium R&D investment 

(Vernon and Golec 2008) 

Figure 3.3 
Price controls restrain cash flows 
from any given approved drug, 

which limits the supply of 
internally-generated capital for 

R&D investment 
 (Vernon and Golec 2008) 
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investment, either from internally generated cash flows or from external investors, will 

decline, generating a leftward shift in the MCC curve.  Irrespective of which channel takes 

precedence, aggregate R&D investment declines unambiguously, as shown in Figure 3.4.  

 

This equilibrium model has been substantiated by various models of 

pharmaceutical R&D investment.  Simulations of an illustrative government-imposed price 

control regime from 1980 to 2001 indicated that R&D investment would have fallen by 

~30%, ultimately resulting in ~350 new medicines going undeveloped, which is more than 

one-third of all new drugs brought to market over that period (Giaccotto et al. 2005).  In 

the long run, a similar model suggests that a 10% decline in drug prices would cause a 5 – 

6% decline in pharmaceutical innovation (Lichtenberg 2006).  

These theoretical predictions have been buttressed empirically by analyzing several 

models in which price regulation has been threatened or enacted.  Because of its regulatory 

system, empirical analyses have primarily focused on Europe as a model.  Since the early 

1980s, nearly all European Union countries have employed demand and supply-side 

mechanisms to regulate pharmaceutical prices.  While there is significant regulatory 

heterogeneity across countries, most exert some form of direct price control, and most have 

Figure 3.4 
Price controls lead to a leftward shift in either the MEI or MCC curve, or, in the worst case, both (Author’s Figures) 
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stated an identical objective: to limit pharmaceutical price inflation to the rate of overall 

consumer price inflation (Sood et al. 2009, Golec and Vernon 2010).  According to this 

benchmark, the policies have been successful: EU real pharmaceutical prices did not 

increase between 1986 and 2004 (Golec and Vernon 2010).  Moreover, EU prices are 20 – 

40% lower than those in the U.S (Danzon and Furukawa 2008). 

A strictly price-focused analysis, however, is superficial and fails to investigate the 

unintended consequences of regulation on firm profitability and R&D investment.  Across 

nineteen OECD countries, direct price controls have reduced pharmaceutical company 

revenues by an average of 16.8%, which has contributed to an average difference of 4.9% 

in aggregate profitability between U.S. and EU firms (Sood et al. 2009, Golec and Vernon 

2010).  Firm profitability is positively correlated with R&D investment (Sherer 2001, 

Trushin 2011, Golec et al. 2010); and that relationship has held in this case.  EU 

pharmaceutical R&D spending was 24% higher than that of the U.S. in 1986, but by 2004, 

following the widespread adoption of price controls, EU R&D spending trailed that of the 

U.S. by 14% (Vernon and Golec 2008).  The implications of Europe’s R&D paucity are 

self-evident: EU firms introduced twice as many new pharmaceutical products as U.S. 

firms between 1987 and 1991, but they introduced 20% fewer products between 2000 and 

2004 (Vernon and Golec 2008).  Eger and Mahlich (2014) further confirm these results 

with more recent data.  The findings are consistent with the predicted cash-flow effect, in 

which a decline in firms’ profitability constrains the supply of funds for investment, 

causing a leftward shift in the MCC curve and receding R&D investment. 

Drug prices in the United States, on the other hand, have largely remained 

unregulated.  However, the domestic pharmaceutical industry has not been entirely 
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immune from the threat of price controls.  The most preeminent threat came in 1993 with 

the Clinton administration’s proposed Health Security Act (HSA).  Although the proposal 

was ultimately defeated in Congress, it has served as an experiment through which the 

response of U.S. pharmaceutical firms to potential regulation can be observed.  Under the 

HSA, drug prices would have unambiguously declined in accordance with mandated 

formulary restrictions, rebate negotiations, and generic substitution (Ellison and Mullin 

2001).  Further, the Act would have established an Advisory Council on Breakthrough 

Drugs which would have had the authority to limit prices of newly developed 

pharmaceuticals (Kutyavina 2010).   

Although it was never passed, the HSA introduced a credible threat of price 

controls within the U.S. market.  In response, real pharmaceutical price inflation fell 

abruptly in 1993 and lingered near zero for several years thereafter (Golec and Vernon 

2010).  I have previously discussed the positive correlation between drug prices and 

overall financial performance.  As such, one would expect firms and investors to integrate 

their revised expectations into investment decisions a priori; and indeed, this was the case.  

Expectations of firm profitability (using stock market valuations as a proxy) declined 

significantly: a sample of stock performance from 1993 to 1995 for 111 pharmaceutical 

and biotechnology companies revealed an average downturn of ~19% (Golec and Vernon 

2010).  The availability of external financing for biotechnology companies similarly 

faltered (Lerner et al. 2003).  Consistent with the theoretical predictions made heretofore, 

aggregate pharmaceutical R&D investment declined in turn.  Investment was 7.7% lower 

in 1994 than 1993; but tellingly, R&D spending quickly recovered in 1995 following the 

HSA’s rejection (Golec and Vernon 2010).  This observation suggests that the short-term 
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decline in investment derived from lower expected returns and restricted external 

financing, both of which are consistent with the market equilibrium detailed previously.  

In summary, while there are multiple channels through which price controls 

influence firms’ R&D investment decisions, they are unambiguously associated with 

declining R&D investment.  Declining investment, in turn, results in a dearth of 

biomedical innovation and approved drugs.  This reality carries significant implications not 

only for human population health but also for the financial feasibility of the orphan drug 

megafund, which is discussed hereafter.   

4. Theoretical Integration of ODA Incentives 

The Orphan Drug Act mandates five specific incentives to improve the economic 

viability of orphan drug development: (1) Minimum 7-year post-approval market 

exclusivity period; (2) Receipt of a 50% tax credit for clinical trial expenditures; (3) The 

award of NIH grant funding to some drug developers3; (4) FDA clinical trial protocol 

assistance; and (5) FDA application fee waivers.  The ODA, however, remains 

unconsidered in the orphan drug megafund proposed by Fagnan et al. (2014).  While such 

an approach may suffice for their purposes, a more accurate theoretical incorporation of 

ODA incentives is necessary for a comprehensive analysis of orphan drug megafund 

efficacy under the stress of price controls.  As such, I integrate three of the five ODA 

market incentives into the illustrative megafund framework developed in Fernandez et al. 

(2012).  The theoretical development begins by augmenting single-drug metrics, such as 

revenues and costs, and concludes by expanding the analysis to portfolio performance.  

                                                
3 Currently, the ODA guarantees up to $14 million in NIH funding per year.  It is unclear how this amount 
may change given the Trump administration’s decision to significantly reduce the NIH’s budget.  As such, I 
omit this incentive from the theoretical model. 
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Of the financial incentives mandated by the ODA, the guaranteed seven-year 

market exclusivity period is the most significant.  In effect, this provision grants the drug 

developer monopoly privileges for seven years following the approval of an orphan drug.  

This exclusivity, however, differs in important ways from a traditional patent.  Patent 

protection is often granted early in a drug candidate’s life cycle and encompasses a wide 

variety of uses and indications.  Moreover, patent protection for a given drug expires 

exactly twenty years from the date of issue, regardless of the drug’s regulatory standing at 

the time.  In contrast, market exclusivity under the ODA grants exclusive marketing rights 

for exactly seven years following approval, regardless of the drug’s patent status.  Further, 

market exclusivity only encompasses the indication for which the drug was approved and 

is conditional on the developer’s ability to meet market demand (Rohde 2000).  

Consequently, it is possible for the market exclusivity period granted by the ODA to act 

concurrently or independently of a drug’s patent protection period; an intricacy that 

warrants theoretical consideration. 

 Fernandez et al. (2012) assume a 10-year drug development period with post-

approval generation of income X from year 10 to year 204. For my purposes, however, the 

assumption of a fixed income-generating period is overly simplistic.  As such, I propose 

the incorporation of a variable L which represents the residual patent exclusivity given a 

clinical trial and approval period of TD for each drug.  Thus, in the case of an approved 

orphan drug, the modified framework should account both for the unconditional 7-year 

market exclusivity granted by the FDA as well as any remaining post-approval patent 

                                                
4 The twenty-year upper bound represents the maximum period of patent exclusivity. 
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exclusivity.  This modification places a lower bound of seven on the market exclusivity for 

orphan drugs while allowing patent protection to extend that period up to twenty years.   

 In the existing framework, the present value of cash flows from an approved drug, 

given a cost of capital r and a marketing period of ten years, is: 

𝑌+A =
B
C
1 − +

+6C FG   

The incorporation of residual patent exclusivity in relation to monopoly privileges 

granted by the FDA augments this model as follows: 

𝑌H =
B
C
1 − +

+6C I   

where 𝐿 = 20 − 𝑇N and is bound by 7 ≤ 𝐿 ≤ 20  

 Because the length of market exclusivity is a significant driver of lifetime cash 

flows, the consideration of variable periods of exclusivity amongst drugs is critical.  As 

such, my framework better represents the reality for both orphan and non-orphan drugs.   

Market exclusivity operates as a ‘pull’ incentive by generating market demand.  

The other primary mandates of the ODA, in contrast, act as ‘push’ incentives by reducing 

R&D costs (Grace and Kyle n.d.).  The ODA’s push mechanisms are two-fold: (1) The 

Orphan Drug Tax Credit (ODTC); and (2) FDA Application Fee Waivers. 

 The ODTC provides a tax credit to drug developers equal to 50% of the cost of 

completed clinical trials.  This tax credit can be applied immediately or carried forward for 

up to twenty years, which is a significant distinction, as orphan drug developers are often 

pre-revenue firms without existing tax liabilities (U.S. FDA 2016).  Importantly, the 

ODTC is provided regardless of the drug’s regulatory outcome.  As clinical trial costs 

often amount to hundreds of millions of dollars, the approval-independent nature of the 

ODTC serves to alleviate some of the risk of orphan drug development and lower the 
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effective cost of capital for developers (Ernst & Young 2015).  Thus, considering the 

overall costs of development for orphan drugs necessitates the incorporation of the ODTC.  

 The final incentive provided by the ODA is the remittance of FDA application fees.  

Specifically, this provision mandates that the developer’s application fee, as established by 

the Prescription Drug User Fee Act (PDUFA), is waived for any product which has 

received orphan drug designation.  In 2016, the fee for a drug application totaled 

$2,038,100 (U.S. FDA 2016).  While, the fee waiver provision is far less significant than 

the ODTC, it is an important distinction between orphan and non-orphan drug candidates, 

and thus merits consideration in the theoretical framework.   

To incorporate these incentives into the model, it seems intuitive to begin with the 

framework’s measure of costs.  However, because Fernandez et al. (2012) assume a pre-

discounted cost metric, considering these incentives as sources of income avoids 

overcomplicating the model.  Thus, I propose the integration of a variable F which 

represents both the variable tax credit and fixed fee waiver granted to the drug developer.  

The integration follows: 

𝐹 = .5𝛼𝐶 + 𝑤 where 𝛼 = UV%)%UWV	YC%WV	UZ[Y[
YZYWV	\]^]VZ_`])Y	UZ[Y[

 and 𝑤 = 𝑓𝑖𝑥𝑒𝑑	𝑐𝑜𝑠𝑡	𝑜𝑓	𝐹𝐷𝐴	𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑓𝑒𝑒 

 In the existing framework, if C represents the present value cost of development 

associated with an approval, the total investment return, Rs, between t=0 and t=10 for a 

single approved drug is as follows:  

𝑌+A =
B
C
1 − +

+6C FG   

𝑅[ =
nFG
o
− 1 = B

Co
1 − +

+6C FG − 1  
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In the orphan drug model, I incorporate F into lifetime income, YL, as follows.  

Importantly, because F is a one-time payment received prior to approval, I assume that it 

occurs at t=0, and thus, remove any need to discount. 

𝑌H =
B
C
1 − +

+6C I + 𝐹  

𝑅[ =
nI
o
− 1 =

p
q +: F

Frq I 6s

o
− 1  

Thus far, I have only incorporated ODA incentives into a single-drug framework.  

To fully consider the effects on megafund returns, it is essential to expand this 

development to the portfolio level.  Because the financial incentives provided by the ODA 

directly increase a drug’s income-generating potential, their incorporation will 

unambiguously increase the portfolio’s returns.  However, it is also imperative to consider 

how the incentives influence portfolio variance.  The modified framework stands as 

follows: 

 Given a cost of capital r, the present-value of cash flows over the post-approval 

market exclusivity period L is represented by:  

𝑌H =
B
C
1 − +

+6C I + 𝐹  

If C represents the present value cost of development associated with an approval, 

the total investment return, Rs, between t=0 and t=L for a single approved drug is as 

follows: 

𝑅[ =
nI
o
− 1 =

p
q +: F

Frq I 6s

o
− 1  

For a single drug, development represents a Bernoulli trial, denoted Ii, in which the 

probability of drug approval/sale (Ii =1) is equal to p and the probability of failure (Ii = 0) is 
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equal to 1-p. Therefore, the rate of return, R, from t=0 to t=L for one drug is a random 

variable given by: 

𝑅 = 	 𝑅[	𝑤𝑖𝑡ℎ	𝑎	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑝
−1	𝑤𝑖𝑡ℎ	𝑎	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	(1 − 𝑝)  

The mean and standard deviation for the return on one drug, R, then, are given by: 

𝐸 𝑅 = 𝑝 1 + 𝑅[ − 1 

𝑆𝐷 𝑅 = 	 𝑉𝑎𝑟 𝑅 = (1 + 𝑅[) 𝑝(1 − 𝑝) 

When applied to a portfolio, Rp, of n independent5 and identical projects, we find: 

𝑅_ = 	
nI xiy

z{F 	
)o

− 1 = 	 +6|}
)

𝐼i)
%*+ − 1  

𝐸 𝑅_ = 𝑝 1 + 𝑅[ − 1 

𝑆𝐷 𝑅_ = +6|} �

)
𝑝 1 − 𝑝 = 1 + 𝑅[

_ +:_
)

= nI
o

_ +:_
)

  

While the portfolio’s total asset return is paramount, because the megafund is also 

debt-financed, it is essential to consider its default probability.  Doing so necessitates the 

probability distribution of drug failures/approvals, 𝐼i)
%*+ .  Ii is a binomial random 

variable, thus its cumulative distribution function is: 

Pr 𝐼i)
%*+ ≤ 𝑘 =

𝑛
𝑗 𝑝1 1 − 𝑝 ):1�

1*A   

Assuming a zero-coupon RBO at t=0 which pays Z upon maturity at t=L, the 

probability of default on that security then follows: 

Pr 𝑌H 𝐼i)
%*+ < 𝑍 = Pr 𝐼i)

%*+ < �
nI

=
𝑛
𝑗 𝑝1 1 − 𝑝 ):1

�
�I

:+

1*A   

                                                
5 Fernandez at al. (2012) assume insignificant covariance for simplicity.  While this may not accurately 
represent reality, the simulations executed hereafter explicitly account for pair-wise correlation between 
projects.  
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By making some basic assumptions about the drug development process, the 

preceding framework can be used to illustrate the benefits of portfolio financing.  The 

following examples follow the structure of those presented in Fernandez et al. (2012), but I 

extend them to consider the effects of ODA incentives.  Consider a single drug with 

development costs (C) of $200 million over a period of ten years.  Assume the drug has a 

5% chance of approval, and if approved, will generate net income of $2 billion for the ten 

remaining years of its patent protection period.  At a 10% cost of capital (r), the present 

value of the drug upon approval (YL) is $12.3 billion.  At that valuation, the implied 

compound annual rate of return over years 11 to 20 (L) is equal to ��_]UY]\	�WV�]
oZ[Y

F
y − 1, 

and thus, �%∗$+/.�
$A./

F
FG − 1 = 11.9%.  The expected return may seem attractive on the 

surface, but the returns are largely dichotomous.  While investors enjoy a 5% likelihood of 

earning 51% returns, they also have a 95% chance of returning -100%.  The annualized 

standard deviation in this scenario is equal to 423.5%.  Such an all-or-nothing risk-reward 

profile is unlikely to appeal to the overwhelming majority of investors, and is particularly 

unlikely to satisfy the criteria of investors with $200 million in free capital.  Indeed, this 

situation is indicative of the reality in drug development today.   

Now consider a portfolio of investments in 150 such projects (n=150).  As 

previously illustrated by portfolio theory, the expected rate of return is still 11.9%.  The 

standard deviation, meanwhile, decreases by a factor of +
)
.  Thus, while the annualized 

standard deviation of returns was 423.5% for a single investment, it is merely 34.6% 

�/�%
+�A

	in the case of 150 investments.   



 

27 
	

This reduction in risk, though, comes at the cost of investment scale.  Because each 

project has an independent development cost of $200 million, the megafund requires $30 

billion of capital to finance 150 investments.  At the same time, however, the risk 

reduction allows the megafund to issue financing via both debt and equity instruments.  

For example, if the megafund issued a total of $24.6 billion (Z) of zero-coupon bonds, the 

default probability of those bonds would be the probability of less than two drugs earning 

approval, which is equal to 0.4%.  Fernandez et al. (2012) note that this default rate is 

comparable to that of Aaa corporate bonds, and thus use the average yield on those 

securities to proxy for the yield on megafund bonds.  The assumed yield of 3.85% on $24.6 

billion of ten-year securities implies a present value of $16.8 billion, and thus the 

remaining $13.2 billion would need to be financed via equity.  In this case, the expected 

return on equity and standard deviation would be 21.5% and 78.9%, respectively.  While 

the addition of leverage does inflate the risk-reward profile compared to the all-equity case, 

the risk associated with an investment in a megafund is significantly lower than that 

associated with an investment in a single drug development program.   

Finally, consider a similar portfolio of 150 investments in orphan drug 

development programs.  In this scenario, the ODA incentives (represented by F) increase 

the present value of any approved drug (YL).  For simplicity, assume that clinical trial 

expenses comprise the entirety of development costs6.  As noted previously, the FDA 

application fee totaled $2,038,100 in 2016.  Thus, F is equal to ~$103 million, and YL 

increases to ~$12.4 billion.  Further, because orphan drugs enjoy higher rates of regulatory 

                                                
6 In reality, total development costs include pre-clinical research expenses, to which the ODA tax credit does 
not apply.  These costs, however, are typically minute in relation to clinical expenses.   
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success than non-orphan drugs, a 10% probability of success better represents the realities 

of orphan drug development.   

Given these assumptions, an all-equity portfolio of 150 orphan drug investments 

would generate an expected compound annual rate of return of +A%∗$+/.�
$A./

F
FG − 1 = 20% 

with an annualized standard deviation of 48%.  While the promise of higher returns does 

increase the portfolio’s risk, the relative increase in expected returns exceeds that in 

expected standard deviation, implying that the overall risk-reward profile of an all-equity 

portfolio is generally more attractive for orphan drugs than non-orphan drugs.  Further, 

assume that the megafund issued $24.8 billion in zero-coupon bonds.  Like before, the 

probability of default on those bonds is the probability of less than two drugs earning 

approval, which is equal to .0002%, 200x smaller than that in the non-orphan drug 

scenario.  This value is consistent with (and in most cases, lower than) the default rates 

among the safest debt securities available, and largely results from the increased rate of 

regulatory success for orphan drugs.  

The preceding analysis suggests that, ceteris paribus, ODA incentives serve to 

increase overall portfolio expectations and performance.  This model, however, is 

illustrative and presents an overtly stylized exemplar of drug development.  Further, the 

model assumes that the drug development programs comprising the portfolio are 

statistically independent.  While this is convenient mathematically, it is unlikely to hold in 

practice.  Thus, the framework presented in exposition may overstate the diversification 

benefits of portfolio financing (Fernandez et al. 2012).  Pairwise correlation, while not 

considered here, is incorporated explicitly in the megafund simulations presented hereafter. 



 

29 
	

Irrespective of its simplifications, my modified framework successfully 

incorporates the financial incentives mandated by the Orphan Drug Act within the 

megafund model.  While purely for illustrative purposes, the integration of these elements 

demonstrates the quantitative benefits of orphan drug development while adding 

qualitative depth to the model.  The combination of these incentives, as well as the 

pathological characteristics mentioned previously, suggest that orphan drugs may be 

particularly apt for large-scale, portfolio financing.  But, an important question remains: in 

the case of government-imposed price controls, is the orphan drug megafund still a viable 

solution to the suboptimal accessibility of capital for biomedical research?  Can the 

benefits of portfolio financing outweigh the detriments of invariably-restrained returns?  

Ostensibly, the answers are ambiguous.  The definitive resolution of these questions 

necessitates expanding this analysis beyond the illustrative.  The remainder of this paper 

attempts to answer these questions analytically via the simulation of portfolio performance 

in price control scenarios. 

5. Price Control Simulations 

Within the wider drug pricing debate, the ODA has been the subject of extensive 

legislative dispute.  For example, the act was amended in 1994, ’95, and ’98, all of which 

remain in place today, while countless further revisions have fallen short in Congress.  The 

proffered restraints vary in their severity and structure, but generally fall within one of two 

silos: fixed, in which one specific restraint is applied to all relevant goods, and variable, in 

which the extent or type of control is dependent on a subset of traits specific to each good.  

As such, I consider a proposed orphan drug price control from each silo.  I then use 
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statistical simulations to analyze the effects of each price control regime on the megafund’s 

performance.  Specific details regarding the simulations and price control policies follow.  

5.1 Simulation Framework and Parameters 

Following the structure of Fagnan et al. (2014), I simulate the performance of an 

orphan drug megafund under the pressure of price controls.  These simulations embody a 

purely probabilistic model, and thus are independent of the illustrative framework 

presented previously.  The model takes the form of a Discrete-Time Markov Process, a 

type of stochastic process in which the transition from state n to state n+1 is independent 

of the transition from n-1 to n.  In other words, the past is conditionally independent of the 

future given the present state.  Within the simulations completed here, and consistent with 

Fernandez et al. (2012), the Markov process takes the following form:  

For each stage in the drug approval process, a vector of transition probabilities is 

generated which represents the probability that a drug candidate transitions from state n to 

state n+1 at any given time t.  At each simulation period and for each drug candidate in the 

portfolio, a random number is generated and assigned from a uniform distribution.  The 

value of this number is then compared to the probability vector to determine if the 

candidate transitions to the next state.  This process continues through fourteen iterations 

for a total of fifteen simulation periods.  Throughout the simulation, cash flow waterfall 

rules delineate the allocation of funds at each iteration.  At the beginning of each period, 

proceeds from sales in the previous period are added to the portfolio’s cash balance.  That 

cash is then used, in order, for the following: payment of the megafund management fee, 

senior bond interest payments, senior bond principal payments, junior bond interest 

payments, and junior bond principal payments.  If the sum of these liabilities exceeds the 
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current cash balance, the outstanding bonds default and the portfolio’s assets are 

liquidated.  If the megafund is not in default, a cash reserve is set aside for future debt 

payments, and any surplus cash is used to finance clinical trials for those compounds that 

have successfully transitioned.  Once all outstanding bond payments have been satisfied, 

the assets are liquidated and the residual proceeds are allocated to the equity holders.   

While the preceding description is a gross simplification, it suffices for my 

purposes.  I encourage curious readers to refer to Fernandez at al. (2012) for further 

clarification.  

I simulate the performance of a megafund with an initial capital of $575 million 

which invests in sixteen orphan drug candidates.  The fund is simulated under two distinct 

price control regimes, as described in subsequent chapters.  In both cases, the fund’s 

performance is simulated over fifteen consecutive six-month periods during which 

acquired drug candidates are either advanced to the next clinical stage, sold, or withdrawn.  

An equal number of pre-clinical and Phase I candidates are acquired with a projected 

liquidation following the completion of Phase II trials, but candidates can be sold 

beforehand to service outstanding RBO liabilities.  To isolate the effects of price controls 

and ensure comparability between my results and those presented in Fagnan et al. (2014), 

unrelated parameters are left unchanged.  In addition, a series of assumptions are made 

regarding the nature of the drug development process, including clinical trial costs and 

duration, phase transition probabilities, and drug valuations.  These assumptions, as 

presented in Table 5.1, are discussed at length hereafter. 

 The drug development process consists of five stages: (1) Pre-clinical testing; (2) 

Phase I clinical trials; (3) Phase II; (4) Phase III; and (5) New Drug Application (NDA).  
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Timelines for this process were generated from the wider literature.  Paul et al. (2010) 

provide pre-clinical timeline data across all drug classes.  While these data are not specific 

to orphan drugs, the primary objective of pre-clinical testing is the verification of a drug’s 

safety and toxicity profile, which should not vary significantly across drug classes.  

Clinical trial length, on the other hand, often differs for orphan drugs because trials must 

be structured to accommodate small, often dispersed, patient populations.  Kaitin and 

DiMasi (2010) provide data for the average length of orphan drug trials from Phase I to 

NDA (5.9 years) and from NDA to regulatory decision (0.8 years).  From there, the 

distribution of trial lengths by phase from Fernandez et al. (2012) is used to stratify the 

averages across the regulatory phases.  The resulting timeline follows in Table 5.1. 

 The results of Paul et al. (2010) and Kaitin and DiMasi (2010) were also used to 

inform the success probabilities for each stage. Orphan drugs have proven to have higher 

rates of regulatory success in aggregate, but little has been done to isolate success 

probabilities by stage.  As such, data for biologic drugs is used as an alternative.  While 

this extrapolation is not perfect, biologics comprised 40% of approved orphan drugs in 

2013, and thus serve as a reasonable proxy (Fagnan et al. 2014).  The resulting success 

rates by stage can be found in Table 5.1.  Compounding these values generates an overall 

approval probability of 0.218, or 21.8%, which is analogous to the results of Hay et al. 

(2014). 

 Clinical trial costs were similarly gleaned from previous analyses.  Pre-clinical 

costs were taken from Paul et al. (2010), again under the assumption that pre-clinical 

development does not differ significantly between orphan and non-orphan drugs.  Clinical 

costs were calculated by multiplying average trial sizes by estimates of per patient costs.  
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Orfali et al. (2012) report average clinical trial sizes for approved orphan drugs between 

2001 and 2011.  Using estimates of average costs per patient from Mathieu (2009), Fagnan 

et al. (2014) generate a distribution of costs by phase, as presented in Table 5.1. 

 Lastly, the simulations utilize a valuation matrix to assign drug candidates a present 

value at each stage of development.  Assuming average annual revenues of $200 million, 

per Thomson Reuters (2012), an average 11.7-year exclusivity period, per Seoane-Vazquez 

(2008), and a 10% cost of capital, per Harrington (2012), the present value of an approved 

orphan drug is ~$2 billion.  Fagnan et al. (2014) then reduce this value by 40% to account 

for marketing and selling expenses, yielding a final valuation of $818 million per approved 

orphan drug.  Finally, the average success rates discussed previously were used to calculate 

valuations corresponding to each development phase.  The resulting valuations are shown 

in Table 5.1.  In addition, the simulations assume a pairwise correlation of 20% amongst 

asset valuations, which was calculated from Bloomberg market data on the mean 

correlation of equity returns of small biopharmaceutical firms (Fernandez et al. 2012).   

Within my simulations, it is through drug valuations that the implementation of 

price controls influence portfolio performance.  Specific details regarding the controls and 

their dynamics are discussed below. 
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5.2 The Kassebaum/Metzenbaum Sales Trigger 

The first orphan drug price control efforts were championed by Senators Nancy 

Kassebaum (R-KS) and Howard Metzenbaum (D-OH).  Proposed to the 102nd Congress in 

1991-92, the Kassebaum/Metzenbaum Initiative stipulated the implementation of a ‘sales 

trigger’ beyond which a drug would lose its market exclusivity privileges.  The amendment 

guarantees market exclusivity for a period of two years, after which and for the following 

five years, it would be revoked if cumulative net sales surpassed a threshold of $200 

million (Garcia 2004).  Cognizant of potential unintended consequences, more recent 

iterations of the legislation have tempered its injunctions.  In the proposed amendments of 

1993-94, the guaranteed period of exclusivity was extended to four years, with a potential 

three-year extension given demonstrated ‘limited commercial value’ (Waxman 1994).  

Additionally, proponents have argued that the sales trigger be set at $200 million in annual 

sales (as opposed to cumulative sales) to reflect inflationary changes since the legislation 

was conceived.  These efforts at modernization display the broad support behind the sales 

trigger approach, and as such, it is likely that prospective ODA reform would, at minimum, 

build off its ideology.  For this reason, integration of the Kassebaum/Metzenbaum 
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Initiative is essential when considering the impact of price controls on the orphan drug 

megafund model.  Rather than the original, I consider the diluted, modernized version is in 

the proceeding analysis, as it is more likely to garner bipartisan legislative support going 

forward.   

Within the illustrative framework, the sales trigger manifests itself in two ways: (1) 

By imposing an upper bound on annual cash flows, X, such that 0 ≤ 𝑋 ≤ 200,000.  For 

simplicity, I assume that X=0 following the loss of exclusivity; and (2) By expanding the 

lower bound of market exclusivity, L, from seven to four years.  To discuss the 

repercussions of such an intervention, one must revisit the model developed previously:  

Given a cost of capital, r, and a present value cost of development, C, the total 

investment return, Rs, between t=0 and t=L for a single approved drug is as follows: 

𝑅[ =
nI
o
− 1 =

p
q +: F

Frq I 6s

o
− 1  

where X and YL are now bound such that 0 ≤ 𝑋 ≤ 200,000 and 4 ≤ 𝐿 ≤ 20 

Thus, the mathematical structure of the illustrative model will not change, but its 

distribution will.  By establishing an upper bound, the sales trigger approach will 

effectively restrain YL.  This, in turn, will decrease the portfolio’s mean return, Rp, and 

increase the number of successes (Ii=1) necessary to service its debt liability, Z.  

Meanwhile, expanding the range of market exclusivity, L, will increase the portfolio’s 

variance.  Thus, I expect that the implementation of a price trigger will adversely affect all 

three measures of portfolio performance.  The magnitude of this effect, however, is harder 

to ascertain.   

To do so, these restraints must be incorporated within the simulation’s parameters.  

As noted previously, price controls operate via drug valuations.  Because the valuations 
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generated in Fagnan et al. (2014) already assume annual revenues of $200 million, the 

implementation of a sales trigger regime acts solely through a binding ceiling on a drug’s 

exclusivity period.  At an annual revenue of $200 million, a drug would not satisfy the 

criteria to demonstrate a ‘limited commercial potential,’ and thus would not receive the 

conditional exclusivity extension.  Consequently, its exclusivity period would effectively 

be bound at four years, which manifests itself in the drug’s present value as follows: 

𝑃𝑉 = By
+6% y

	�
)*A  where 𝑋) = 200,000,000 and 𝑁 = 4  

 Assuming a 10% cost of capital, the resulting present value of an approved drug is 

~$380 million.  In contrast to the $818 million valuation used in Fagnan et al. (2014), this 

represents a 53% decline in value.  The ultimate impact of this decline on overall portfolio 

performance is discussed in Chapter 6. 

5.3 The Orphan Drug Windfall Tax  

During the same Congressional session, Representative Fortney Stark (D-CA) first 

proposed the Orphan Drug Windfall Tax.  Similarly meant to combat excessively 

profitable orphan drugs, the amendment proposed allowing developers to recoup twice the 

development cost of an orphan drug, after which all windfall profits, defined as the amount 

by which a drug’s gross annual revenues exceed 125% of the drugs production costs, 

would be taxed at a rate of 75% for the remainder of the drug’s market exclusivity period 

(Stark 1991).  In addition, the bill proposed the expansion of the ODA’s R&D tax credit 

incentives to include pre-clinical testing7 (Rin-Laures and Janofsky 1991).  The bill, 

although ultimately defeated in Congress, was repurposed and re-proposed three times 

before its demise (Kim 2012).   

                                                
7 The ODA currently mandates the provision of R&D tax credits only for clinical development costs. 
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Because it simultaneously extends one of the existing ODA incentives, the windfall 

tax proposal garnered support as a less severe alternative to the sales trigger approach.  The 

two are not mutually exclusive, but rather, occupy different sides of the same coin.  As 

such, the integration of a sales trigger regime within the megafund model necessitates a 

parallel consideration of the windfall tax.  To do so, one must return to the equation for a 

drug’s present value cash flows over its market exclusivity period, YL: 

𝑌H =
B
C
1 − +

+6C I + 𝐹  

Under the proposed windfall tax regulations, drug income is strictly controlled such 

that a drug’s lifetime income is given by: 

𝑌H = 2𝐶 + 1.25 𝑃) +	 .25(𝑋) − 1.25 𝑃))�
)*A

�
)*A   

where 𝑃) = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝐶𝑜𝑠𝑡𝑠	𝑖𝑛	𝑌𝑒𝑎𝑟	𝑛 

The directional effect of the windfall tax is difficult to decipher within the 

theoretical model because each of the terms in the equation above must be discounted to 

the present to generate a drug’s ultimate valuation.  The degree of discounting, moreover, 

will vary for each term and for each drug depending on the specific point at which YL 

exceeds twice the drugs development cost, 2C.  By using the assumptions made in Fagnan 

et al. (2014), however, I integrate the windfall tax into my simulations, through which it is 

possible to ascertain the regime’s effects on the megafund’s overall performance.   

As discussed previously, the ODA grants a 50% tax credit for all clinical trial 

expenses, which the windfall tax further extends to pre-clinical expenses.  Within the 

simulation, this effectively halves the cost of pre-clinical development to $2.5 million, 

resulting in a total development cost of $58.5 million.  In contrast, drug valuations are 

adversely affected.  Fagnan et al. (2014) assume annual revenues of $200 million with a 
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profit margin of 60%, which implies an $80 million per annum cost of goods sold (COGS) 

per approved drug.  At this level, an approved drug’s revenue exceeds twice its 

development cost ($117 million) in the first year, after which, and for the remainder of the 

drug’s exclusivity period, any revenue beyond $100 million (125% of production costs, Pn) 

are taxed at a rate of 75%.  The present value of the resulting stream of cash flows is given 

by: 

𝑃𝑉 = ++�
+6C

+ ./�∗ /AA:++�
+6C

+ +AA
+6C I +H

H*A
./�∗+AA
+6C I

H
H*A   

 Thus, in the first year, the drug generates a net cash flow of $137.75 million, 

followed by a net cash flow of $125 million every year thereafter.  In line with Fagnan et 

al. (2014), I assume a 10% discount rate, a market exclusivity period of 12 years, and a 

40% marketing and selling write-down, which ultimately yields a present value of ~$518 

million per approved drug.  The ultimate impact of this decline on portfolio performance is 

discussed in Chapter 6. 

The relevant simulation parameters for each scenario are listed in full on the 

following page (Table 5.2). 
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6. Results 

The simulation results largely correspond to intuitive predictions: in both cases, the 

implementation of price controls significantly reduces the portfolio’s annualized return on 

equity (referred to as ROE hereafter).  In the sales trigger scenario, the resulting ROE is 

4.0%, representing a 70% decline from the base case returns.  The decline is less severe in 

the windfall tax scenario, amounting to an ROE of 9.9%, a 26% drop.   

 Interestingly, under both price control scenarios, the megafund outperformed the 

base case in terms of debt fulfillment.  While the RBO default probabilities in Fagnan et al. 

(2014) were 0.8 and 56 basis points for the senior and junior RBO tranches, respectively, 

they were <.01 and <30 bp under both price control scenarios.  While the differences are 

not quantitatively material, this is a qualitatively unexpected result.  I suspect that it may 
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be attributable to a rightward shift in the distribution for drug sale period.  In the base case 

scenario, the ratio of drug candidates sold in Phase II vs. Phase III was ~1:2.  The ratio 

rose to ~1:2.4 and ~1:2.6 in the sales trigger and windfall tax scenarios, respectively.  This 

shift illustrates the cash flow pressure exerted by diminished drug valuation.  Because the 

value of any given drug falls in a price control scenario, the megafund must increase its 

average investment horizon with the hope of liquidating drug candidates at larger, later 

valuations.  The results suggest that, at the valuation parameters used here, this shift is 

consequential only for the equity tranche.  However, one would expect that default risk is 

decreasing in valuation, and thus past a certain threshold valuation, the megafund’s ability 

to service its debt liabilities would be materially influenced.   

To test this theory, I execute the simulations using a valuation of $100 million to 

proxy for extreme cash flow pressure.  In this case, the default probabilities jumped to 10 

and 660 basis points for the senior and junior tranches, respectively.  Thus, the negligible 

default rates generated in the price control scenarios suggest that the RBO risk profiles are 

relatively insensitive to drug valuations. 

The results are presented in Table 6.1.  The table is comprised of three sections.  

The megafund’s research impact refers to the number of compounds which were 

successfully advanced through clinical trials and sold in each drug development phase.  

The equity performance subheading contains a variety of performance metrics for the 

megafund’s equity tranche.  While the average annualized ROE is the preferred measure of 

performance, I also include a variety of probability measures for different ranges of ROE.  

Finally, the RBO performance subheading contains default the probability and expected 

loss, presented in basis points, for both the senior and junior RBO tranches.   



 

41 
	

 

 



 

42 
	

7. Discussion 

The orphan drug megafund, by addressing information asymmetry problems and 

providing large-scale financing, increases the amount of loanable funds available for 

biomedical R&D, which may ultimately stimulate long-run medical innovation.  My 

results suggest that price controls significantly obscure the feasibility of such a model.  

Interestingly, though, only in the sales trigger scenario do price controls implicate its 

feasibility entirely.  It is likely that the megafund, under the downward pressure of a sales 

trigger price control regime, would fail to provide sufficient risk-adjusted returns to attract 

the scope of investment necessary for proper implementation.  Conversely, in the windfall 

tax scenario, the megafund proved particularly resilient.  At an annualized ROE of 9.9% 

and a 14.7% probability of a negative return, the megafund still offers a risk-reward profile 

comparable to many historically attractive equity instruments.  For example, the geometric 

average return on the S&P 500 stock market index from 1928 – 2016 was 9.52% while the 

probability of a negative return was ~27% (Damodaran 2017). 

These results, and in particular, the disparity between the megafund’s performance 

across the two price control scenarios, carry implications which could inform policy 

decisions regarding drug prices.  The most salient of these concern the differential merits 

of various price control structures.  In general terms, the simulations measure the 

megafund’s performance under both a multidimensional, fixed regime and a 

unidimensional, variable regime.  The sales trigger represents a multidimensional, fixed 

price control, as it targets both drug profits and market exclusivity, and is implemented at a 

rigid threshold regardless of the circumstances.  The windfall tax, in contrast, takes the 
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form of a unidimensional, variable price control, as it targets only drug profits, and its 

extent is dependent on a subset of traits specific to each drug.   

The results here suggest that the economic incentives for drug development may be 

further restrained under a multidimensional, fixed price control regime as opposed to a 

unidimensional, variable regime.  It seems intuitive that multidimensional restraints would 

be more distortionary than unidimensional controls.  One would expect several 

simultaneous restraints to act multiplicatively, resulting in a significant reduction in 

commercial potential; and indeed, this is what my findings suggest.  The second argument 

is less intuitive.  It may be that variable price control regimes are more akin to case-by-

case regulation, and grant the governing entity more flexibility to allow for moderate 

producer surplus while preventing exploitation.  

In sum, the results suggest that, despite a marginal reduction in overall 

performance, the orphan drug megafund model proves resilient to a moderate level of price 

regulation, and thus may remain a solution to the suboptimal accessibility of capital for 

biomedical research despite government intervention.  Importantly, though, megafund 

performance declines with increasing regulatory rigor.  Such a finding illustrates the 

potential for extreme constraints to smother biomedical innovation, and suggests that, 

conditional on government intervention, a moderate, unidimensional price control regime 

may represent an optimal strategy.   

 While these considerations are imperative for a strictly financial discussion of drug 

pricing policy, my analysis does not address the welfare implications of price regulation 

and its various forms.  On the surface, it seems that the megafund model could effectively 

address market failures in biomedical capital markets despite moderate price controls, 
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which may represent a Pareto improvement in net.  Detailed welfare considerations are 

beyond the scope of this analysis, but should be an important concern in any market 

intervention strategy.    

 In addition, this paper fails to address a host of administrative challenges which 

must be overcome for the megafund model to be implemented.  These challenges include, 

but are not limited to, the intellectual capacity of the biomedical research sector, secondary 

market liquidity for biopharmaceutical compounds, the megafund’s ability to provide 

managerial and industry-specific expertise (à la venture capitalists), and the uncertainty 

associated with the potential repeal or restructuring of the Affordable Care Act.  While 

these issues lie outside the realm of my analysis, I encourage interested readers to refer to 

Fernandez at al. (2012) for a more detailed discussion.  

8. Conclusion 

Financing drug development is a complex and imperfect process.  Biomedical 

capital markets experience more severe information asymmetry problems than most capital 

markets, and are largely devoid of financial innovation to ameliorate such imperfections.  

The biomedical megafund, by providing large-scale financing and mediating scale 

misalignment, offers a potential solution to the suboptimal accessibility of capital for 

biomedical research.  In this paper, I have shown that pharmaceutical price controls 

restrain the financial efficacy of this model.  I have tailored and expanded the megafund 

theoretical framework to better represent the realities of orphan drug development.  I have 

illustrated how the integration of ODA incentives suggests that orphan drugs may be 

particularly apt for portfolio financing.  Finally, I have compared the performance of an 
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orphan drug megafund under the status quo to an identical megafund under two price 

control regimes.   

My results indicate that megafund performance is relatively insensitive to moderate 

price controls, and thus may remain a solution to the suboptimal accessibility of capital for 

biomedical research despite government intervention.  Further, they suggest that variable, 

unidimensional price controls may represent a financially optimal drug pricing policy with 

respect to the trade-off between managing drug expenditures and incentivizing R&D.  

Overly restrictive price controls, conversely, may exacerbate underinvestment in R&D and 

render financing alternatives like the megafund implausible.   

These results, however, are merely suggestive rather than conclusive.  The 

simulations rely on a host of assumptions about the drug development process and market.  

While I believe my assumptions are accurate and conservative, the pharmaceutical industry 

evolves in parallel with biomedical innovation, and thus the realities of drug development 

tomorrow may look different than they do today.  Further, any implications for drug 

pricing policy are strictly financial, and do not encompass the welfare analyses which any 

proposal would necessitate. 

Finally, it is important to note the precision of my analysis.  The megafund is 

merely one of several alternative financing models, including Drug Royalty Investment 

Funds, ‘Regulated Investment’ Business Development Companies, and Health Care Loan 

Securitization, among others.  Moreover, the price controls considered here are only two of 

an innumerable array.  Indeed, the threat of price controls has contributed to the growing 

popularity of other pricing alternatives, including value-based and indication-specific 

pricing regimes.  Regardless of the financing model and pricing structure used, it is a 
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foregone conclusion that the existing model of drug development and market pricing will 

be forced to evolve in the immediate future.  As this paper illustrates, the balance between 

drug affordability and economic allure is tenuous, but optimizing this trade-off is 

paramount for ensuring both access and innovation.  Straying too far in either direction 

may have grave consequences.  
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