Comprehensive Examination

PRACTICE EXAM 1

Number:	Solutions
---------	-----------

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- \bullet Write your number (not your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1–4 that total to 100 points.

For Department Use Only:	
Grader #1:	
Grader #2:	

1. (a) State the Axiom of Completeness.

Every nonempty set of real numbers that is bounded above has a least upper bound.

(b) Let (a_n) be a sequence of real numbers. State the ϵ -N definition of what it means for (a_n) to converge to $a \in \mathbf{R}$.

A sequence (an) converges to a EIR if YETO FINEN such that Yn7N, Ian-al LQ.

(c) Let (a_n) be an increasing sequence of real numbers and suppose that there exists a real number $M \in \mathbf{R}$ such that $a_n \leq M$ for all n. Use the Axiom of Completeness and the definition in part (b) to prove that the sequence (a_n) converges.

Let n > N. Then $|a_n-a| = a-a_n$ Since $a_n \neq a = \sup A \forall n$ $\leq a-a_N$ since $a_n > a_N$ for n > N $\leq e$.

This, Yn 7N, lan-al < E. Hence, (an) converges.

2. (a) Let $f: A \to \mathbf{R}$ be a function. Using the ϵ - δ definition, define what it means for f to be continuous at $c \in \mathbf{A}$.

(b) Suppose that the functions $f, g: \mathbf{A} \to \mathbf{R}$ are both continuous at $c \in A$. Prove using the above definition that the function $h: A \to \mathbb{R}$ defined by h(x) = f(x) + g(x) is continuous at c.

Suppose that $f,g:A \to IR$ are continuous at c and set h(x) = f(x) + g(x). Let $\epsilon \neq 0$ and choose $s_f, s_g \neq 0$ such that $\forall x \in A$ if $|x-c| \leq s_f$ then $|f(x)-f(c)| \leq \epsilon/2$ and if $|x-c| \leq s_g$ then $|f(x)-f(c)| \leq \epsilon/2$. Let $s_f = \min \epsilon s_f, s_g \leq 1$. Then if $x_f \in A$ and $|x-c| \leq s_g$ we have

$$|h(x) - h(c)| = |f(x) + g(x) - f(c) - g(c)|$$

$$\leq |f(x) - f(c)| + |g(x) - g(c)|$$

$$\leq |f(x) - f(c)| + |g(x) - g(c)|$$

$$\leq |f(x) + |g(x)| + |g(x) - g(c)|$$

Hence, $4x \in A$ with 1x-8/128, 1h(x)-h(c)/128. So, h is continuous at c.

- 3. Suppose that we have a collection of compact sets $K_{\lambda} \subset \mathbf{R}$ for all λ in some index set Λ .
 - (a) Give a condition that is both necessary and sufficient for a set of real numbers to be compact in \mathbf{R} .

A set k of real numbers is compact if and only if k is closed and bounded.

- (b) Use the condition in part (a) to prove that the intersection $K = \bigcap_{\lambda \in \Lambda} K_{\lambda}$ is compact.
- Since K_X is compact $\forall \lambda \in \Lambda$, K_X is closed for each λ . Then, since an arbitrary intersection of closed sets is closed, $\Lambda \in \Lambda$ is closed.
- Let $\lambda_0 \in \Lambda$. (Note that if $\Lambda = \phi$ then $K = \phi$ is **decivially** compact.) Since $K \lambda_0$ is compact, $K \lambda_0$ is bounded. And since $K = \bigcap_{\lambda \in \Lambda} K_{\lambda} \subseteq K_{\lambda_0}$

K must be bounded as well.

Therefore, K is closed and bounded in IR, and hence compact.

(c) Give an example to show that the union $\bigcup_{\lambda \in \Lambda} K_{\lambda}$ is not necessarily compact.

Let M = [N and $K_n = [-n,n]$. Since each K_n is a closed interval, each K_n is closed. Clearly we have $|X| \leq n$ for all $X \in K_n$ and so K_n is bounded and hence compact $\forall n$. However, $\bigcup_{n \in [N]} K_n = \bigcup_{n = 1}^{\infty} [-n,n] = |R|$ is not bounded.

So, UKX is not necessarily compact.

- 4. Consider the sequence of functions (f_n) where $f_n(x) = \frac{1}{1+n^2x^2}$ for $n \ge 1$.
 - (a) Prove that (f_n) converges pointwise to a function f on [0,1].

Let
$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } 0 \le x \le 1 \end{cases}$$
 We claim that (f_n) converges to f_n pointwise on f_n .

To see this, let E70 and x & CO, 1].

- · If x=0, we have fn (0)=1 for all n>1. Hence, |fn(0)-f(0)|=|1-1|=0 < €
- If $0 \le x \le 1$, choose N & IN such that $\frac{e^{-1}-1}{x^2} \le N^2$. Then for n > 1, we have

$$\frac{\xi^{-1}-1}{\chi^{2}} < N^{2} \leq n^{2} \text{ and } So |f_{n}(x)-f(x)| = \left|\frac{1}{1+n^{2}\chi^{2}}\right| = \frac{1}{1+n^{2}\chi^{2}} < \xi.$$

$$= \frac{1}{\xi^{-1}-1} \leq n^{2}\chi^{2}$$

$$= \frac{1}{\xi^{-1}-1} \leq n^{2}\chi^{2}+1$$

$$= \frac{1}{\xi^{-1}-1} \leq n^{2}\chi^$$

(b) Prove that (f_n) does not converge uniformly on [0,1].

Suppose that (fn) converged uniformly on [0,1], then since each function $f_n(x) = \frac{1}{1+n^2x^2}$ is continuous on [0,1], the limit function must be continuous has vell. But from part a, the limit of (f_n) is $f(x) = \begin{cases} 1 & \text{if } x=0 \\ 0 & \text{if } 0 \neq x \leq 1 \end{cases}$, which is not continuous at x=0. Thus, (f_n) cannot converge uniformly on [0,1].