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Department of Mathematics and Statistics

COMPREHENSIVE EXAMINATION
<1 ANALYSIS >
PrAacTICE ExAM 1

NUMBER: Qolutions

Read This First:

e This is a closed-book examination. No books, notes, cell phones, electronic devices of
any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.

e Write your number (not your name) in the above space.

e For any given problem, you may use the back of the previous page for scratch work.
Put your final answers in the spaces provided.

e Additional sheets of paper will be available if you need them. If you use an additional
sheet, label it carefully and be sure to include your number.

e In order to receive full credit on a problem, solution methods must be complete, logical
and understandable. Show all your work, and justify your answers.

The Analysis Exam consists of Questions 1-4 that total to 100 points.
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Analysis Practice Exam 1

1. (a) State the Axiom of Completeness.
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(b) Let (a,) be a sequence of real numbers. State the e-N definition of what it means
for (ay,) to converge to a € R.
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(c) Let (a,) be an increasing sequence of real numbers and suppose that there exists a
real number M € R such that a, < M for all n. Use the Axiom of Completeness
and the definition in part (b) to prove that the sequence (a,) converges.
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Analysis Practice Exam 1

2. (a) Let f: A — R be a function. Using the e-0 definition, define what it means for f
to be continuous at ¢ € A.
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(b) Suppose that the functions f,g: A — R are both continuous at ¢ € A. Prove using
the above definition that the function h : A — R defined by h(z) = f(z) + g(z) is
continuous at c.
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Analysis Practice Exam 1

3. Suppose that we have a collection of compact sets K C R for all A in some index set A.
(a) Give a condition that is both necessary and sufficient for a set of real numbers to

be compact in R.
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(b) Use the condition in part (a) to prove that the intersection K = m K, is compact.
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(c) Give an example to show that the union U K is not necessarily compact.
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Analysis Practice Exam 1

4. Consider the sequence of functions (f,) where f,(r) = TT{:T?Z for n > 1.
(a) Prove that (f,) converges pointwise to a function f on [0, 1].
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(b) Prove that (f,) does not converge uniformly on [0, 1].
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