

Number:	 Solutions
	0011

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Algebra Exam consists of Questions 1-4 that total to 100 points.

For Department Use Only:	
Grader #1:	
Grader #2:	

- 1. Let G_1 and G_2 be finite groups and $\phi: G_1 \to G_2$ be a homomorphism. Suppose that $x \in G_1$ has order $n \ge 1$.
 - (a) Show that the order of $\phi(x)$ divides n.

Since
$$x_n = e_1$$
, $\phi(x)^n = \phi(x^n) = \phi(e_1) = e_2$.
So, if $m = o(\phi(x))$, we have $1 \le m \le n$, and we can write $n \ge km + r$ where $r_1 k \in IN$ and $0 \le r \le m - 1$.
Then $e_2 = \phi(x^n) = \phi(x^km + r) = \phi(x^km) \phi(x^r) = (\phi(x))^m k \phi(x^r)$.
Since $m = o(\phi(x))$, $\phi(x)^m = e_2$ and so we have $e_2 = e_2 \cdot \phi(x^r)$, or $\phi(x^n)^m = e_2$. Since $m = o(\phi(x))$ and $r \ge m$, we must have $r \ge n$.
Thus, $n = km$, in other words, $m \mid n$.

(b) Prove that if the order of G_2 is relatively prime to n, then x is in the kernel of ϕ .

Suppose that
$$gcd(16z|,n)=1$$
, $Consider < \phi(x) > Since $o(\phi(x))=m$, $K\phi(x) > 1=m$ as well, $Since < \phi(x) > 1$ is a subgroup of the finite group Gz , we have $m \mid 1Gz\mid$. From part a, we also have $m \mid n$. Hence, $m \mid gcd(16z\mid,n)=1$. Thus, $m=1$. In other words, $\phi(x)^{\prime}=e_{2}$, so x is in the vernel of ϕ .$

- 2. Let G be a group and define $Z = \{g \in G : ga = ag \text{ for all } a \in G\}$.
 - (a) Show that Z is a subgroup of G.
- · Since ea=ae=a Vatt, e € Z.
- · Let g, h & Z. Then ga = ag and ha = ah Ya & G. So, for any a & G we have (gh)a = g(ha) = g(ah) = (ga)h = a(gh), then $gh \in \mathbb{Z}$,
- · Let g = 2. Then for any a = 6, ga = ay implies that a = g ag and so agt = gta, so, gt & Z as well. Thus, Z is a subgroup of G.
 - (b) Show that the subgroup Z is normal in G.

Let g & 6 and Z & Z. Then for any a & 6 we have g = g = a = g = 2 a since = 70 = a 3 since t = Z = a = 9 9-1 = ag +g-1,

Hence, gtg-16 2, So; 2 is normal in G.

(c) Prove that if the quotient group G/Z is cyclic, then G is abelian.

Suppose that 6/2 = < 92) is cyclic with generator g2 for some g6 6. Let a, b 66. Then a 2 = gk 2 and b 2= gl 2 for some k, l EIN, then g-ka and g-1 b are elements of Z and so IZ, Z2 E Z such that g-ka = z, and g-lb = zz, then ab=(gkz)(glzz) = gkgl Z, Zz since z, E Z = 96gk 2, 22 $= g^{\ell} z_2 g^{k} z_1 \text{ sine } z_2 \in Z.$ Paigrer 2 roll = ba.

thus, G is abelian.

3. Consider the group S_9 of permutations of the set $\{1, 2, 3, ..., 9\}$. Let $\sigma, \tau \in S_9$ be the permutations

$$\sigma = (1, 4, 3)(9, 5, 7)$$
 and $\tau = (3, 9)(1, 5, 8)$.

(a) Write $\tau \sigma^2$ as a product of **disjoint** cycles.

(b) Compute the **order** of each of σ , τ , and $\tau \sigma^2$.

order
$$(\sigma) = l_{cm}(3, 3) = 3$$

order $(t) = l_{cm}(2, 3) = 6$
order $(t\sigma^2) = l_{cm}(4, 3) = 12$.

- (c) Decide whether each of σ , τ , and $\tau \sigma^2$ is an **even** or **odd** permutation; don't forget to justify.
- · or is the product of two disjoint 3-cycles, which are even, hence or is even.
- t is the product of a disjoint 2-cycle and 3-cycle. Since 2-cycles are odd and 3-cycles are even, the product t is odd.
- o tor is the product of an odd 4-cycle and a disoint even 3-cycle.

 So, Tor is odd.

0

- 4. Let R be a ring.
 - (a) Define what it means for a subset $I \subseteq R$ to be an ideal of R.

 If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.

$$T \subseteq \mathbb{R}$$
 is an ideal of R if 1. $T \neq \emptyset$
2. $\forall x_i y \in I$, $x - y \in I$, and
3. $\forall x \in I$ and $r \in R$, $r \times A$ and $x \cap A$ are in I .

(b) Let $I \subseteq R$ be an ideal of R, S be another ring, and $\phi : R \to S$ be a ring homomorphism. Prove that if ϕ is surjective then $\phi(I) = \{\phi(x) : x \in I\}$ is an ideal of S.

Suppose that \$: R + S is surjective.

- · Since & is surjective, Os & P(I), so P(I) + b.
- · Let $\phi(x)$ and $\phi(y)$ be in $\phi(I)$ for $x,y \in I$.

Then $\phi(x) - \phi(y) = \phi(x-y) \in \phi(I)$ since $x-y \in I$.

· Let of (X) 6 of (I) for XEI and SES, Since of is sufjective,

Frek such that d(v)=s, Then

s φ(x)= φ(r) φ(x) = φ(rx) ∈ φ(I) since (x ∈ I.

Similarly, $d_1(x) = d_1(x) d_1(x) = d_1(x) d_1(x) = d_1(x)$.

Thus, &(I) is an ideal of S.