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COMPREHENSIVE EXAMINATION
<] ALGEBRA >
PrRACTICE ExXAM 2

NUMBER: So\u*\ons

Read This First:

e This is a closed-book examination. No books, notes, cell phones, electronic devices of
any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.

e Write your number (not your name) in the above space.

e For any given problem, you may use the back of the previous page for scratch work.
Put your final answers in the spaces provided.

e Additional sheets of paper will be available if you need them. If you use an additional
sheet, label it carefully and be sure to include your number.

e In order to receive full credit on a problem, solution methods must be complete, logical
and understandable. Show all your work, and justify your answers.

e The Algebra Exam consists of Questions 1-4 that total to 100 points.
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Algebra Practice Exam 2

1. Let G, and G, be finite groups and ¢ : G; = G» be a homomorphism. Suppose that
z € Gy has order n > 1.

(a) Show that the order of ¢(z) divides n.
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(b) Prove that if the order of G, is relatively prime to n, then  is in the kernel of ¢.
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2. Let G be a group and define Z = {g € G : ga = ag for all a € G}.
(a) Show that Z is a subgroup of G.
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(b) Show that the subgroup Z is normal in G.
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(c) Prove that if the quotient group G/Z is cyclic, then G is abelian.
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3. Consider the group Sy of permutations of the set {1,2,3,...,9}. Let o,7 € Sy be the
permutations
o=(1,4,3)(9,5,7) and 7=(3,9)(1,5,8).

(a) Write o2 as a product of disjoint cycles.

Il 2 2 Y S b 7 %19
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Toe*= (1,1,7,8) (3,4, 5)

(b) Compute the order of each of ¢, 7, and 70>
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(c) Decide whether each of o, 7, and 70 is an even or odd permutation;
don't forget to justify.
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4. Let R be a ring.
(a) Define what it means for a subset / C R to be an ideal of R.

N i "o

If you use any other technical terms like “closed,” “subring,” “group,” “subgroup,”
etc., you must fully define those terms as well.
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{b) Let I C R be an ideal of R, S be another ring, and ¢ : R <+ S be a ring homo-
morphism. Prove that if ¢ is surjective then ¢(I) = {¢(z) : £ € I} is an ideal of
S.
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