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Read This First:

e This is a closed-book examination. No books, notes, cell phones, electronic devices of
any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.

e Write your number (not your name) in the above space.

e For any given problem, you may use the back of the previous page for scratch work.
Put your final answers in the spaces provided.

o Additional sheets of paper will be available if you need them. If you use an additional
sheet, label it carefully and be sure to include your number.

e In order to receive full credit on a problem, solution methods must be complete, logical
and understandable. Show all your work, and justify your answers.

e The Multivariable Calculus and Linear Algebra Exam consists of Questions 1-8 that
total to 200 points.
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Multivariable Calculus and Linear Algebra Practice Exam 2

1. Let F(z,y,2) = 2% + xy* + 2.
(a) Find an equation of the tangent plane to the surface F(z,y,z) = 4 at the point

(1,2, -1).
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(b) Find the directional derivative of F' at the point (1,2, —1). in the direction of the
tangent vector to the curve 7(¢) = (282 — ¢,¢,t* — 2t3) at t = 1.
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2. Find the points at which the absolute maximum and minimum values of the function
flz,y) = 22 + 294> + 5 on the region 22 + 4y*> < 4 occur. State all points where the
extrema occur as well as the maximum and minimum values.
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3. Calculate the volume of the region that lies both inside the sphere 22 + y% + 22 = 9 and
above the cone z = /22 + ¥
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i 9‘5:3*1' Q7\237\7' Smp\e ) C\pseﬂ\ 7 Seosthn '
4. Compute [..32%ydz + (z* + e¥) dy where C is the circle 2% 4+ 9* +x = 1, traversed in

the counterclockwise direction.
Note. This integral may also be written as [, (3z2y, z° + e¥) - dr
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5. Let M,(R) be the vector space of all n x n matrices with real coefficients. We say that
A, B € M,(R) commute if AB = BA.

(a) Fix A € M,(R). Prove that the set of all matrices in Af,(R) that commute with A
is a subspace of M,(R).
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b) Let A = bl € My(R) and let W C M>(R) be the subspace of all matrices in
11

M(R) that commute with A. Find a basis of W.
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6. Let V and IV be vector spaces and let T be a linear transformation from V to 1.

(a) Prove that the kernel of T (also called the null space of T') is a subspace of V.
CSine T(0) 70, sma T U Ve, Q6 kevT. Tun ler T *9,
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(b) Prove that T is one-to-one if and only if the kernel of T is {0}.
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(c) Suppose that # T is one-to-one and {v,,va,...v,} is a set of n linearly independent
vectors in V. Prove that {T(v,), T(v2),...T(v,)} is linearly independent in W.
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7. Let P, be the vector space of polynomials in x with real coefficients of degree at most
n. Define T': P, = P3 by T(f) = [; f(t) dt. You may assume that 7 is linear.
(a) Compute T'(a + bz + cz?) where a,b,c € R.

T(a*bx+cy?r )= S*(gﬁ\,’c"‘d:z)‘“;

ax*+ 2 bt x 3‘6‘#5 .

(b) Compute the matrix of T with respect to the bases {1, z, 2%} of P, and {1, z, z?, 2}
of P3. p._-_
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8. (a) Let V be a vector space and T : V — V and U : V — V be linear transformations
. that commute, i.e. ToU = U oT. Let v € V be an eigenvector of T such that
U(v) # 0. Prove that U(v) is also an eigenvector of 7.
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(b) Suppose that T : R* — R? is a linear transformation that has 0 as an eigenvalue,
What are the possible values of the rank of T'? Justify your answer.
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