Comprehensive Examination Multivariable Calculus and Linear Algebra > Practice Exam 2

Number:	Solutions
	2010110113

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Multivariable Calculus and Linear Algebra Exam consists of Questions 1–8 that total to 200 points.

For Department	Use Only:
Grader #1:	15
GRADER #2:	

- 1. Let $F(x, y, z) = x^2 + xy^2 + z$.
 - (a) Find an equation of the tangent plane to the surface F(x, y, z) = 4 at the point (1, 2, -1).

$$\nabla F(x_1y_1z) = \langle 2x^{+}y^{2}, 2xy_1 | Y$$

$$\nabla F(1,2,-1) = \langle 2+4, 2\cdot2, 1 \rangle = \langle 6, 4, 1 \rangle = \vec{n}$$

$$T.P. is \qquad 6(x-1) + 4(y-2) + (z+1) = 0$$
or $6x + 4y + z = 13$

(b) Find the directional derivative of F at the point (1,2,-1), in the direction of the tangent vector to the curve $\vec{r}(t) = \langle 2t^2 - t, t, t^2 - 2t^3 \rangle$ at t = 1.

T.V.
$$\vec{r}'(t) = \langle 4t - 1, 1, 2t - 6t^2 \rangle$$

 $\vec{r}'(1) = \langle 3, 1, -4 \rangle$
 $||\vec{r}'(t)|| = \sqrt{9 + 1 + 16} = \sqrt{26}$
 $\vec{u} = \frac{1}{\sqrt{26}} \langle 3, 1, -4 \rangle$

So,
$$D_{1}^{2}F(1,2,-1) = \nabla F(1,2,-1) \cdot \frac{1}{120} \cdot \frac$$

2. Find the points at which the absolute maximum and minimum values of the function $f(x,y) = x^2 + 2y^2 + 5$ on the region $x^2 + 4y^2 \le 4$ occur. State all points where the extrema occur as well as the maximum and minimum values.

Interior
$$f_X(x,y) = 2x = 0$$
 => $x=0$
 $f_Y(x,y) = 4y = 0$ => $y=0$
cirtical point $(0,0)$ and $f(0,0) = 5$.

Boundary
$$X^2+4y^2=4$$
 \rightarrow let $g(x_1y)=600$ X^2+4y^2 so that $\nabla g(x_1y)=\langle 2\chi, 8y\rangle$

$$f(0, \pm 1) = 7$$
 and $f(\pm 2, 0) = 9$

So, the absolute maximum value on R is 9, which occurs at the points (2,0) and (-2,0). The absolute minimum value 1) 5, which accord at (0,0).

3. Calculate the volume of the region that lies both inside the sphere $x^2 + y^2 + z^2 = 9$ and above the cone $z = \sqrt{x^2 + y^2}$.

1. Compute $\int_C 3x^2y \, dx + (x^3 + e^y) \, dy$ where C is the circle $x^2 + y^2 + x = 1$, traversed in the counterclockwise direction.

Note. This integral may also be written as $\int_C \langle 3x^2y, x^3 + e^y \rangle \cdot d\mathbf{r}$

$$\int_{C} 3x^{2}y \, dx + (x^{3} + e^{3}) \, dy = \int_{D} (3x^{2} - 3x^{2}) \, dA$$

$$= 0$$

$$= 0$$

(Since
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, we could also ose the Fundamental Thin of Line Integrals.)

- 5. Let $M_n(\mathbb{R})$ be the vector space of all $n \times n$ matrices with real coefficients. We say that $A, B \in M_n(\mathbb{R})$ commute if AB = BA.
 - (a) Fix $A \in M_n(\mathbb{R})$. Prove that the set of all matrices in $M_n(\mathbb{R})$ that commute with A is a subspace of $M_n(\mathbb{R})$.

Call this set of matrices that communic with A, C(A). Let $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in M_n(R)$ Since 0A = A0 = 0, $0 \in C(A)$, so $C(A) \neq \emptyset$. Let $B, C \in C(A)$ and $d \in R$. Then

$$A (dB+C) = A(dB)+AC$$

$$= dAB+CA since CE((A))$$

$$= dBA+CA since BEC(A)$$

$$= (dB+C)A$$

So, dB+C & C(A). Thus, C(A) is a subspace of Mn(IK).

(b) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in M_2(\mathbb{R})$ and let $W \subseteq M_2(\mathbb{R})$ be the subspace of all matrices in $M_2(\mathbb{R})$ that commute with A. Find a basis of W.

Let
$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in W$$
. Then $AB = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ a+c & b+d \end{pmatrix}$
and $BA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a+b & a+b \\ c+d & c+d \end{pmatrix}$. Since $AB = BA$, we must have $a+b=a+c = b+d = b+d = b+d = b+d = b+d = a+d = a$

- 6. Let V and W be vector spaces and let T be a linear transformation from V to W.
 - (a) Prove that the kernel of T (also called the null space of T) is a subspace of V.

$$T((x+y) = cT(x)+T(y)$$
 by linearity
= $cOw + Ow$

So, CX+y Eler(T). Thus, ker(T) is a subspace of V.

(b) Prove that T is one-to-one if and only if the kernel of T is $\{0\}$.

Suppose that $\ker(T) = 503$, Then if $u, v \in V$ and Tu = Tv we have Tu - Tv = 0 => T(u - v) = 0, So, $u - v \in \ker(T)$, Hence, u - v = 0, i.e. u = v, So, T is one-to-one.

Now Suppose that T is one-to-one and let $v \in \ker(T)$. Then T(v) = 0 but t(0) = 0 since T is linear. Thus, v = 0, and $v \in V$.

(c) Suppose that $\mathcal{F}T$ is one-to-one and $\{v_1, v_2, \dots v_n\}$ is a set of n linearly independent vectors in V. Prove that $\{T(v_1), T(v_2), \dots T(v_n)\}$ is linearly independent in W.

Suppose that $C_1 T(v_1) + ... + c_n T(v_n) = 0$, then by linearity, we have $T(c_1v_1+...+c_nv_n)=0$, So, $C_1v_1+...+c_nv_n \in Ker(T)$. Since T is one-to-one, Ker(T)=803 and so $C_1v_1+...+c_nv_n=0$. Since $Ev_1,...,v_n = 0$ is linearly independent, $C_1 = C_2 = ... = c_n = 0$, thus, $E_1 T(v_1) = 0$, $E_2 T(v_1) = 0$.

- 7. Let P_n be the vector space of polynomials in x with real coefficients of degree at most n. Define $T: P_2 \to P_3$ by $T(f) = \int_0^x f(t) dt$. You may assume that T is linear.
 - (a) Compute $T(a + bx + cx^2)$ where $a, b, c \in \mathbb{R}$.

$$T(a+bx+cx^2) = \int_0^x (a+b+ct^2) dt$$

= $ax + \frac{1}{2}bx^2 + \frac{1}{3}cx^3$.

(b) Compute the matrix of T with respect to the bases $\{1, x, x^2\}$ of P_2 and $\{1, x, x^2, x^3\}$ of P_3 .

$$+(1)=\chi=1(\chi)$$

$$T(\chi) = \frac{1}{2}\chi^2 = \frac{1}{2}(\chi^2)$$

$$T(x^2) = \frac{1}{3}(x^3)$$

$$S_{0}, [T]_{\alpha}^{\beta} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$$

8. (a) Let V be a vector space and $T: V \to V$ and $U: V \to V$ be linear transformations that commute, i.e. $T \circ U = U \circ T$. Let $v \in V$ be an eigenvector of T such that $U(v) \neq 0$. Prove that U(v) is also an eigenvector of T.

Let Th = hT and $V \in V$ be such that $TV = \lambda V$, $V \neq 0$, $hv \neq 0$. Then $T(hv) = (Th)V = (hT)V = h(Tv) = h(\lambda v) = \lambda(hv)$. Hence, since $hv \neq 0$, $hv = v \neq genvector for <math>T$ with eigenvalue λ .

(b) Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that has 0 as an eigenvalue. What are the possible values of the rank of T? Justify your answer.

Suppose that 0 is an eigenvalue of $T: |R^2 \rightarrow IR^2$. Then there is a nonzero vector $v \in |R^2|$ such that Tv = 0v = 0. So, $v \in \ker(T)$ and so the nullity of T is at least 1. Since the nullity of T is at most $\dim(IR^2) = 2$, the possible values of the nullity of T are I and I. Now, the sum of the rank and nullity of I must be the $\dim(IR^2) = 2$. Here, the possible values of the rank of I are I and I.