

Number:	 501	utions
		1 1 2 1 3

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Algebra Exam consists of Questions 1–4 that total to 100 points.

For Department Use Only:	
Grader #1:	_
Grader #2:	

- 1. Let G be a group and let $I(G) = \{x \in G : x = x^{-1}\}.$
 - (a) Show that if G is abelian, then I(G) is a subgroup of G.

Suppose that G is abelian.

- · Since e=e-1, e & I(6).
- Let $x,y \in \mathbb{T}(G)$. Then $X = X^{-1}$ and $y = y^{-1}$. So, $(xy)^{-1} = y^{-1} \times X^{-1} = y \times X = xy$ since G is abelian. Then $Xy \in \mathbb{T}(G)$.

 Let $X \in \mathbb{T}(G)$. Then $X = X^{-1}$ and $(X^{-1})^{-1} = X = X^{-1}$, so $X^{-1} \in \mathbb{T}(G)$.

 Thus, $\mathbb{T}(G)$ is a subgroup of G.
 - (b) Show that if G is finite and $I(G) \neq \{e\}$, then G must have even order.

Suppose G is finite and $I(G) \neq \{e\}$. Then, since $e \notin I(G)$, there must exist an $x \neq e$, with $x \notin I(G)$. Since $x = x^{-1}$, we have $x^{\perp} = e$ and so x has order 2. Since the order of an element must divide the order of a finite group, G must have even order.

(c) Give an example of a group G for which I(G) is not a subgroup of G.

$$D_{3} = \{e, f, f^{2}, g, fg, f^{2}g\}$$

$$o(f) = 3$$

$$o(f) = 2$$

$$fg \cdot g = f \cdot I(D_{3}) = \{e, g, f^{2}g\}$$

$$fg \cdot g = f \cdot I(D_{3}).$$

- 2. Let G be a group.
 - (a) Let $g, h \in G$. Prove that for all integers $k \geq 1$,

$$(h^{-1}gh)^{k} = h^{-1}g^{k}h.$$
Clearly $(h^{-1}gh)^{1} = h^{-1}g^{1}h$ so $(h^{-1}gh)^{1}k = h^{-1}g^{1}kh$ for $k > 1$.

Suppose that $(h^{-1}gh)^{1}k = h^{-1}g^{1}kh$ for $k > 1$. Then
$$(h^{-1}gh)^{1}k = (h^{-1}gh)^{1}k(h^{-1}gh)$$

$$= (h^{-1}gh)^{1}k(h^{-1}gh)$$

$$= (h^{-1}gh)^{1}k(h^{-1}gh)$$

$$= h^{-1}gh(hh^{-1}gh)$$

(b) Let N be a normal subgroup of G and suppose that N is cyclic. Let H be a subgroup of N. Prove that H is a normal subgroup of G.

Let N & G be a normal subgroup of G and suppose that N=<n7 is cyclic with generator n & N. Let H & N be a subgroup of N and let h & H and g & G. We will show that g h g & H to conclude that N is normal in G. Since HEN *** AND SO & K & Z such that H \times \time

Then, since $h \in H$, $\exists j \in \mathbb{Z}$ such that $h = (n^k)^j$. Hence, $g^{-1}hg = g^{-1}hkig = (g^{-1}hg)^ki$ by part a. **See next page

Now heH = N and N is normal ing G, so ging & N = < h7.

Thus, $\exists L \in \mathbb{Z}$ such that $g^{-1}ng = n^{\ell}$. So, $g^{-1}hg = (g^{-1}ng)^{Kj} = (n^{\ell})^{Kj} = (n^{k})^{\ell j} \in \langle n^{k} \rangle = H$.

therefore, H is a normal subgroup of G.

For part b, we need to extend the result in part a to 2.

· For
$$k=0$$
, we have $(h^{-1}gh)^{o}=e=h^{-1}g^{o}h$

· For K <0, we have
$$(h^{-1}gh)^{k} = [(h^{-1}gh)^{k}]^{-1}$$

=
$$(h^{-1} q^{-k} h)^{-1}$$
 by a since $-k \approx 1$

Hence,
$$(h^{-1}gh)^{k} = h^{-1}g^{k}h \quad \forall k \in \mathbb{Z}.$$

- 3. Consider the group S_{12} of permutations of the set $\{1, 2, 3, \ldots, 12\}$.
 - (a) Give an example of an even permutation $\sigma \in S_{12}$. Don't forget to justify your answer.

Let $\sigma = (1,2,3)$. Since σ is a cycle of length 3, which is odd, σ is even.

(b) Give an example of a permutation $\tau \in S_{12}$ that has order 14. Don't forget to justify your answer.

Let T = (1,2)(3,4,5,6,7,8,9). Then T is the product of disjoint cycles of lengths 2 and 7. Thus, the order of T is l(m(2,7) = 14.

(c) Prove that no element of S_{12} has order 13.

Suppose that $\sigma \in S_{12}$ has order 13. Then, since $|S_{12}|=12!$, $|S_{12}|$ is a finite group and we must have $|S_{12}|=12!$, $|S_{12}|$ is $|S_{12}|$ is $|S_{12}|$ but 13 is prime and $|S_{12}|=12!$ is not divisible by 13. So, there is no such $|\sigma|$.

- 4. Let R be a ring.
 - (a) Define what it means for a subset $I \subseteq R$ to be an ideal of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.

A subset
$$I \subseteq R$$
 of a ring R is an ideal if

1. $I \neq \emptyset$.

2. $\forall x, y \in I$, $x-y \in I$, and

3. $\forall x \in I$ and $r \in R$, rx and xr are in I .

(b) Let $I \subseteq R$ be an ideal of R, and suppose that $xy - yx \in I$ for every $x, y \in R$. Prove that the quotient ring R/I is commutative.

Let
$$X+I$$
, $y+I\in R/I$ for $X,y\in R$.
Then $(x+I)(y+I)=Xy+I$ and $(y+I)(x+I)=yx+I$.

Since
$$xy-yx \in I$$
 we have $(xy-yx)+I=0+I$.
Thus, $xy+I=yx+I$, and so $(x+I)(y+I)=(y+I)(x+I)$
from above. So, R/I is commutative.