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Analysis Practice Exam 3

1. Consider the sequence {a,) defined recursively as follows.

4
ay =2 and Qpyl =9 — — for n>1.
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(a) Prove that for n > 1, ap4; = ap.
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(b) Prove that the sequence (a,) is bounded from above.
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(c) Prove that the sequence (a,) converges and find lim a,.
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Analysis Practice Exam 3

2. (a) Let (an) be a sequence of real numbers. State the e-N definition of what it means
for (a,) to converge to a € R.
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(b) Suppose that the sequence of real numbers (a,) converges to a € R. Prove using
the above definition that the sequence {|a,|) converges to |a|.
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Analysis Practice Exam 3

3. (a) State the Mean Value Theorem.
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(b) Suppose that f: A — R is a real-valued function on a set A C R. Define what it
means for f to be uniformly continuous on A.
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(¢) Suppose that f is a real-valued function defined on the entire real line. Use the
Mean Value Theorem to prove that if f’(z) exists and is bounded on all of R, then

f is uniformly continuous on R.
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Analysis Practice Exam 3

4. (a) State the Weierstrass A-test.
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(b) Use part (a) to show that for any r € (0,1) the function f(z Z % is well-
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defined and continuous on [—r,7].
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