Amherst College
 Department of Mathematics and Statistics

Comprehensive Examination
 \triangleleft Algebra \triangleright
 Practice Exam 1

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Algebra Exam consists of Questions 1-4 that total to 100 points.

For Department Use Only:

Grader \#1: \qquad
Grader \#2: \qquad

1. Let G_{1} and G_{2} be groups and $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism. Suppose that N_{2} is a subgroup of G_{2} and define the set

$$
N_{1}=\left\{a \in G_{1}: \phi(a) \in N_{2}\right\} .
$$

(a) Prove that N_{1} is a subgroup of G_{1}.
[Note: this is a standard theorem in Math 350. Since you are being asked to prove that theorem here, you may not quote that theorem.]
(b) Prove that if N_{2} is a normal subgroup of G_{2} then N_{1} is a normal subgroup of G_{1}.
2. Let G be a finite group. Suppose that x and y are distinct elements of order two in G such that $x y=y x$. Prove that the order of G is divisible by 4 .
3. Suppose that σ is a permutation in the alternating group A_{10} given by

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 7 & 2 & 6 & 10 & 1 & 5 & & & 3
\end{array}\right)
$$

where the images of 8 and 9 have been lost.
(a) Determine the images of 8 and 9 under σ. Don't forget to justify your answer.
(b) Compute the order of σ.
4. Let R be a ring.
(a) Define what it means for a subset $I \subseteq R$ to be an ideal of R.

If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
(b) Let $R=\mathbb{R}[x]$ be the ring of polynomials with coefficients in the field \mathbb{R} of real numbers. Let $I \subseteq R$ be the subset

$$
I=\{f \in \mathbb{R}[x]: f(1)=f(2)=0\}
$$

Prove that I is an ideal of R.
(c) With $R=\mathbb{R}[x]$ and I defined in part (b), prove that R / I has zero-divisors. That is, show that there are two nonzero elements of R / I whose product is zero in R / I.

