Comprehensive Examination

PRACTICE EXAM 1
Number:
Read This First:
• This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
\bullet Write your number (not your name) in the above space.
• For any given problem, you may use the back of the <i>previous</i> page for scratch work. Put your final answers in the spaces provided.
• Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
• In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
• The Analysis Exam consists of Questions 1–4 that total to 100 points.
For Department Use Only:
Grader #1:

Grader #2: _____

1. (a) State the Axiom of Completeness.

(b) Let (a_n) be a sequence of real numbers. State the ϵ -N definition of what it means for (a_n) to converge to $a \in \mathbf{R}$.

(c) Let (a_n) be an increasing sequence of real numbers and suppose that there exists a real number $M \in \mathbf{R}$ such that $a_n \leq M$ for all n. Use the Axiom of Completeness and the definition in part (b) to prove that the sequence (a_n) converges.

2. (a) Let $f: A \to \mathbf{R}$ be a function. Using the ϵ - δ definition, define what it means for f to be continuous at $c \in \mathbf{A}$.

(b) Suppose that the functions $f, g: \mathbf{A} \to \mathbf{R}$ are both continuous at $c \in A$. Prove using the above definition that the function $h: A \to \mathbb{R}$ defined by h(x) = f(x) + g(x) is continuous at c.

- 3. Suppose that we have a collection of compact sets $K_{\lambda} \subset \mathbf{R}$ for all λ in some index set Λ .
 - (a) Give a condition that is both necessary and sufficient for a set of real numbers to be compact in \mathbf{R} .
 - (b) Use the condition in part (a) to prove that the intersection $K = \bigcap_{\lambda \in \Lambda} K_{\lambda}$ is compact.

(c) Give an example to show that the union $\bigcup_{\lambda \in \Lambda} K_{\lambda}$ is not necessarily compact.

- 4. Consider the sequence of functions (f_n) where $f_n(x) = \frac{1}{1+n^2x^2}$ for $n \ge 1$.
 - (a) Prove that (f_n) converges pointwise to a function f on [0,1].

(b) Prove that (f_n) does not converge uniformly on [0,1].