## Amherst College <br> Department of Mathematics and Statistics

# Comprehensive Examination <br> $\triangleleft$ AnALYSIS $\triangleright$ <br> Practice Exam 1 

## Number:

$\qquad$

## Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1-4 that total to 100 points.


## For Department Use Only:

Grader \#1: $\qquad$
Grader \#2: $\qquad$

1. (a) State the Axiom of Completeness.
(b) Let $\left(a_{n}\right)$ be a sequence of real numbers. State the $\epsilon-N$ definition of what it means for $\left(a_{n}\right)$ to converge to $a \in \mathbf{R}$.
(c) Let $\left(a_{n}\right)$ be an increasing sequence of real numbers and suppose that there exists a real number $M \in \mathbf{R}$ such that $a_{n} \leq M$ for all $n$. Use the Axiom of Completeness and the definition in part (b) to prove that the sequence $\left(a_{n}\right)$ converges.
2. (a) Let $f: A \rightarrow \mathbf{R}$ be a function. Using the $\epsilon-\delta$ definition, define what it means for $f$ to be continuous at $c \in \mathbf{A}$.
(b) Suppose that the functions $f, g: \mathbf{A} \rightarrow \mathbf{R}$ are both continuous at $c \in A$. Prove using the above definition that the function $h: A \rightarrow \mathbb{R}$ defined by $h(x)=f(x)+g(x)$ is continuous at $c$.
3. Suppose that we have a collection of compact sets $K_{\lambda} \subset \mathbf{R}$ for all $\lambda$ in some index set $\Lambda$.
(a) Give a condition that is both necessary and sufficient for a set of real numbers to be compact in $\mathbf{R}$.
(b) Use the condition in part (a) to prove that the intersection $K=\bigcap_{\lambda \in \Lambda} K_{\lambda}$ is compact.
(c) Give an example to show that the union $\bigcup_{\lambda \in \Lambda} K_{\lambda}$ is not necessarily compact.
4. Consider the sequence of functions $\left(f_{n}\right)$ where $f_{n}(x)=\frac{1}{1+n^{2} x^{2}}$ for $n \geq 1$.
(a) Prove that $\left(f_{n}\right)$ converges pointwise to a function $f$ on $[0,1]$.
(b) Prove that $\left(f_{n}\right)$ does not converge uniformly on $[0,1]$.
