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Analysis Practice Exam 1

1. (a) State the Axiom of Completeness.

(b) Let (an) be a sequence of real numbers. State the ε-N definition of what it means
for (an) to converge to a ∈ R.

(c) Let (an) be an increasing sequence of real numbers and suppose that there exists a
real number M ∈ R such that an ≤ M for all n. Use the Axiom of Completeness
and the definition in part (b) to prove that the sequence (an) converges.
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2. (a) Let f : A → R be a function. Using the ε-δ definition, define what it means for f
to be continuous at c ∈ A.

(b) Suppose that the functions f, g : A→ R are both continuous at c ∈ A. Prove using
the above definition that the function h : A → R defined by h(x) = f(x) + g(x) is
continuous at c.
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3. Suppose that we have a collection of compact sets Kλ ⊂ R for all λ in some index set Λ.

(a) Give a condition that is both necessary and sufficient for a set of real numbers to
be compact in R.

(b) Use the condition in part (a) to prove that the intersection K =
⋂
λ∈Λ

Kλ is compact.

(c) Give an example to show that the union
⋃
λ∈Λ

Kλ is not necessarily compact.
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Analysis Practice Exam 1

4. Consider the sequence of functions (fn) where fn(x) = 1
1+n2x2

for n ≥ 1.

(a) Prove that (fn) converges pointwise to a function f on [0, 1].

(b) Prove that (fn) does not converge uniformly on [0, 1].
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