Comprehensive Examination

\triangleleft Multivariable Calculus and Linear Algebra \triangleright Practice Exam 1

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Multivariable Calculus and Linear Algebra Exam consists of Questions 1-8 that total to 200 points.

For Department Use Only:
Grader \#1: \qquad
Grader \#2: \qquad

1. Consider the surface S given by $x^{2} y-y z^{2}+z=1$.
(a) Find an equation of the tangent plane to S at the point $(11,0,1)$.
(b) Find two points on the surface S where the tangent plane is parallel to the $y z$-plane.
2. Let $f(x, y)=3 x^{2}-3 x y+y^{3}$. Find all critical points of f, and classify each as a local maximum, local minimum, or saddle point.
3. Let $f(x, y)= \begin{cases}\frac{3 x^{2} y^{2}}{2 x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
(a) Compute $f_{x}(0,0)$ and $f_{y}(0,0)$.
(b) Is f continuous at $(0,0)$? Justify your answer. This is no longer on the Comps syllabus.
4. Compute $\int_{C} y^{2} d x+3 x y d y$ where C is the boundary curve of the region bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ in the upper half plane $y \geq 0$, traversed in the counterclockwise direction.
Note. This integral may also be written as $\int_{C}\left\langle y^{2}, 3 x y\right\rangle \cdot d \boldsymbol{r}$
5. (a) Let U and V be subspaces of a vector space W. Prove that $U+V=\{u+v: u \in$ $U, v \in V\}$ is a subspace of W.
(b) Suppose $\left\{u_{1}, \ldots u_{m}\right\}$ is a basis for U and $\left\{v_{1}, \ldots v_{n}\right\}$ is a basis for V. Prove that $\left\{u_{1}, \ldots, u_{m}, v_{1}, \ldots v_{n}\right\}$ spans $U+V$.
(c) Prove that $\operatorname{dim}(U+V) \leq \operatorname{dim}(U)+\operatorname{dim}(V)$.
6. Let V be a vector space.
(a) Explain what it means to say that a subset S of V is a basis of V.
(b) Suppose that $\{u, v, w\}$ is a basis of V. Prove that $\{u+2 v, v+2 w, u+2 w\}$ is also a basis of V.
7. Consider the matrix $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, or show that no such matrices exist.
8. Let $P_{2}=\left\{a+b t+c t^{2}: a, b, c \in \mathbb{R}\right\}$ and $T: P_{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T(p)=\left[\begin{array}{l}
p(1) \\
p(2)
\end{array}\right]
$$

(a) Prove that T is linear.
(b) Find the matrix representation of T with respect to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
(c) Find the rank and nullity of T.

