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1. Consider the surface S given by x2y − yz2 + z = 1.

(a) Find an equation of the tangent plane to S at the point (11, 0, 1).

(b) Find two points on the surface S where the tangent plane is parallel to the yz-plane.
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2. Let f(x, y) = 3x2 − 3xy + y3. Find all critical points of f , and classify each as a local
maximum, local minimum, or saddle point.
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3. Let f(x, y) =


3x2y2

2x4 + y4
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

(a) Compute fx(0, 0) and fy(0, 0).

(b) Is f continuous at (0, 0)? Justify your answer. This is no longer on the Comps
syllabus.
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4. Compute
∫
C
y2 dx + 3xy dy where C is the boundary curve of the region bounded by

the circles x2 + y2 = 1 and x2 + y2 = 4 in the upper half plane y ≥ 0, traversed in the
counterclockwise direction.
Note. This integral may also be written as

∫
C
⟨y2, 3xy⟩ · dr
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5. (a) Let U and V be subspaces of a vector space W . Prove that U + V = {u + v : u ∈
U, v ∈ V } is a subspace of W .

(b) Suppose {u1, . . . um} is a basis for U and {v1, . . . vn} is a basis for V . Prove that
{u1, . . . , um, v1, . . . vn} spans U + V .

(c) Prove that dim(U + V ) ≤ dim(U) + dim(V ).
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6. Let V be a vector space.

(a) Explain what it means to say that a subset S of V is a basis of V .

(b) Suppose that {u, v, w} is a basis of V . Prove that {u + 2v, v + 2w, u + 2w} is also
a basis of V .
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7. Consider the matrix A =

2 1 −2
0 1 0
1 1 −1

.
(a) Find all eigenvalues of A.

(b) Find a diagonal matrix D and an invertible matrix P such that A = PDP−1, or
show that no such matrices exist.
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8. Let P2 = {a+ bt+ ct2 : a, b, c ∈ R} and T : P2 → R2 be defined by

T (p) =

[
p(1)
p(2)

]
.

(a) Prove that T is linear.

(b) Find the matrix representation of T with respect to the bases {1, t, t2} and
{[

1
0

]
,

[
−1
1

]}
.

(c) Find the rank and nullity of T .
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