

Amherst College Department of Mathematics and Statistics

Comprehensive Examination ⊲ Algebra ⊳ Practice Exam 2

NUMBER:

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (*not* your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Algebra Exam consists of Questions 1–4 that total to 100 points.

For Department Use Only:

Grader #1: _____

Grader #2: _____

- 1. Let G_1 and G_2 be finite groups and $\phi: G_1 \to G_2$ be a homomorphism. Suppose that $x \in G_1$ has order $n \ge 1$.
 - (a) Show that the order of $\phi(x)$ divides n.

(b) Prove that if the order of G_2 is relatively prime to n, then x is in the kernel of ϕ .

2. Let G be a group and define Z = {g ∈ G : ga = ag for all a ∈ G}.
(a) Show that Z is a subgroup of G.

(b) Show that the subgroup Z is normal in G.

(c) Prove that if the quotient group G/Z is cyclic, then G is abelian.

3. Consider the group S_9 of permutations of the set $\{1, 2, 3, \ldots, 9\}$. Let $\sigma, \tau \in S_9$ be the permutations

 $\sigma = (1, 4, 3)(9, 5, 7)$ and $\tau = (3, 9)(1, 5, 8).$

(a) Write $\tau \sigma^2$ as a product of **disjoint** cycles.

(b) Compute the **order** of each of σ , τ , and $\tau \sigma^2$.

(c) Decide whether each of σ , τ , and $\tau \sigma^2$ is an **even** or **odd** permutation; don't forget to justify.

4. Let R be a ring.

(a) Define what it means for a subset $I \subseteq R$ to be an **ideal** of R. If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.

(b) Let $I \subseteq R$ be an ideal of R, S be another ring, and $\phi : R \to S$ be a ring homomorphism. Prove that if ϕ is surjective then $\phi(I) = \{\phi(x) : x \in I\}$ is an ideal of S.