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Analysis Practice Exam 2

1. Let SN =
N∑
k=1

1

k
.

(a) Use induction to prove that S2N ≥ 1
2
(N + 2) for every N ≥ 0.

(b) Use part (a) to prove that
∞∑
n=1

1

n
does not converge.
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Analysis Practice Exam 2

2. (a) Let (an) be a sequence of real numbers. State the ε-N definition of what it means
for (an) to converge to a ∈ R.

(b) State the Bolzano-Weierstrass Theorem.

(c) Let (an) be a Cauchy sequence in R. Use the definition in part (a) and the Bolzano-
Weierstrass Theorem from part (b) to prove that (an) converges.
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3. (a) State the Intermediate Value Theorem.

(b) Suppose f : [−1, 1] → R is continuous and satisfies f(−1) = f(1). Use the Inter-
mediate Value Theorem to prove that there exists a number γ ∈ [0, 1] such that
f(γ) = f(γ − 1).
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4. (a) Let (fn) be a sequence of bounded functions on [a, b]. Prove that if (fn) converges
uniformly to f on [a, b], then f is bounded.

(b) Give an example to show that the statement in part (a) is false if uniform conver-
gence is replaced by pointwise convergence.
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