Amherst College
 Department of Mathematics and Statistics

Comprehensive Examination
 \triangleleft Analysis \triangleright
 Practice Exam 2

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1-4 that total to 100 points.

For Department Use Only:

Grader \#1: \qquad
Grader \#2: \qquad

1. Let $S_{N}=\sum_{k=1}^{N} \frac{1}{k}$.
(a) Use induction to prove that $S_{2^{N}} \geq \frac{1}{2}(N+2)$ for every $N \geq 0$.
(b) Use part (a) to prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge.
2. (a) Let $\left(a_{n}\right)$ be a sequence of real numbers. State the $\epsilon-N$ definition of what it means for $\left(a_{n}\right)$ to converge to $a \in \mathbf{R}$.
(b) State the Bolzano-Weierstrass Theorem.
(c) Let $\left(a_{n}\right)$ be a Cauchy sequence in \mathbf{R}. Use the definition in part (a) and the BolzanoWeierstrass Theorem from part (b) to prove that $\left(a_{n}\right)$ converges.
3. (a) State the Intermediate Value Theorem.
(b) Suppose $f:[-1,1] \rightarrow \mathbf{R}$ is continuous and satisfies $f(-1)=f(1)$. Use the Intermediate Value Theorem to prove that there exists a number $\gamma \in[0,1]$ such that $f(\gamma)=f(\gamma-1)$.
4. (a) Let $\left(f_{n}\right)$ be a sequence of bounded functions on $[a, b]$. Prove that if $\left(f_{n}\right)$ converges uniformly to f on $[a, b]$, then f is bounded.
(b) Give an example to show that the statement in part (a) is false if uniform convergence is replaced by pointwise convergence.
