Comprehensive Examination

\triangleleft Multivariable Calculus and Linear Algebra \triangleright Practice Exam 2

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Multivariable Calculus and Linear Algebra Exam consists of Questions 1-8 that total to 200 points.

For Department Use Only:
Grader \#1: \qquad
Grader \#2: \qquad

1. Let $F(x, y, z)=x^{2}+x y^{2}+z$.
(a) Find an equation of the tangent plane to the surface $F(x, y, z)=4$ at the point $(1,2,-1)$.
(b) Find the directional derivative of F at the point $(1,2,-1)$. in the direction of the tangent vector to the curve $\vec{r}(t)=\left\langle 2 t^{2}-t, t, t^{2}-2 t^{3}\right\rangle$ at $t=1$.
2. Find the points at which the absolute maximum and minimum values of the function $f(x, y)=x^{2}+2 y^{2}+5$ on the region $x^{2}+4 y^{2} \leq 4$ occur. State all points where the extrema occur as well as the maximum and minimum values.
3. Calculate the volume of the region that lies both inside the sphere $x^{2}+y^{2}+z^{2}=9$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
4. Compute $\int_{C} 3 x^{2} y d x+\left(x^{3}+e^{y}\right) d y$ where C is the circle $x^{2}+y^{2}+x=1$, traversed in the counterclockwise direction.
Note. This integral may also be written as $\int_{C}\left\langle 3 x^{2} y, x^{3}+e^{y}\right\rangle \cdot d \boldsymbol{r}$
5. Let $M_{n}(\mathbb{R})$ be the vector space of all $n \times n$ matrices with real coefficients. We say that $A, B \in M_{n}(\mathbb{R})$ commute if $A B=B A$.
(a) Fix $A \in M_{n}(\mathbb{R})$. Prove that the set of all matrices in $M_{n}(\mathbb{R})$ that commute with A is a subspace of $M_{n}(\mathbb{R})$.
(b) Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \in M_{2}(\mathbb{R})$ and let $W \subseteq M_{2}(\mathbb{R})$ be the subspace of all matrices in $M_{2}(\mathbb{R})$ that commute with A. Find a basis of W.
6. Let V and W be vector spaces and let T be a linear transformation from V to W.
(a) Prove that the kernel of T (also called the null space of T) is a subspace of V.
(b) Prove that T is one-to-one if and only if the kernel of T is $\{0\}$.
(c) Suppose that T is one-to-one and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is a set of n linearly independent vectors in V. Prove that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots T\left(v_{n}\right)\right\}$ is linearly independent in W.
7. Let P_{n} be the vector space of polynomials in x with real coefficients of degree at most n. Define $T: P_{2} \rightarrow P_{3}$ by $T(f)=\int_{0}^{x} f(t) d t$. You may assume that T is linear.
(a) Compute $T\left(a+b x+c x^{2}\right)$ where $a, b, c \in \mathbb{R}$.
(b) Compute the matrix of T with respect to the bases $\left\{1, x, x^{2}\right\}$ of P_{2} and $\left\{1, x, x^{2}, x^{3}\right\}$ of P_{3}.
8. (a) Let V be a vector space and $T: V \rightarrow V$ and $U: V \rightarrow V$ be linear transformations that commute, i.e. $T \circ U=U \circ T$. Let $v \in V$ be an eigenvector of T such that $U(v) \neq 0$. Prove that $U(v)$ is also an eigenvector of T.
(b) Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation that has 0 as an eigenvalue. What are the possible values of the rank of T ? Justify your answer.
