

Amherst College Department of Mathematics and Statistics

Comprehensive Examination ⊲ Multivariable Calculus and Linear Algebra ▷ Practice Exam 2

NUMBER:

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (*not* your name) in the above space.
- For any given problem, you may use the back of the *previous* page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Multivariable Calculus and Linear Algebra Exam consists of Questions 1–8 that total to 200 points.

For Department Use Only:

Grader #1: _____

Grader #2: _____

- 1. Let $F(x, y, z) = x^2 + xy^2 + z$.
 - (a) Find an equation of the tangent plane to the surface F(x, y, z) = 4 at the point (1, 2, -1).

(b) Find the directional derivative of F at the point (1, 2, -1). in the direction of the tangent vector to the curve $\vec{r}(t) = \langle 2t^2 - t, t, t^2 - 2t^3 \rangle$ at t = 1.

2. Find the points at which the absolute maximum and minimum values of the function $f(x,y) = x^2 + 2y^2 + 5$ on the region $x^2 + 4y^2 \leq 4$ occur. State all points where the extrema occur as well as the maximum and minimum values.

3. Calculate the volume of the region that lies both inside the sphere $x^2 + y^2 + z^2 = 9$ and above the cone $z = \sqrt{x^2 + y^2}$.

 Compute ∫_C 3x²y dx + (x³ + e^y) dy where C is the circle x² + y² + x = 1, traversed in the counterclockwise direction. Note. This integral may also be written as ∫_C ⟨3x²y, x³ + e^y⟩ ⋅ dr

- 5. Let $M_n(\mathbb{R})$ be the vector space of all $n \times n$ matrices with real coefficients. We say that $A, B \in M_n(\mathbb{R})$ commute if AB = BA.
 - (a) Fix $A \in M_n(\mathbb{R})$. Prove that the set of all matrices in $M_n(\mathbb{R})$ that commute with A is a subspace of $M_n(\mathbb{R})$.

(b) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in M_2(\mathbb{R})$ and let $W \subseteq M_2(\mathbb{R})$ be the subspace of all matrices in $M_2(\mathbb{R})$ that commute with A. Find a basis of W.

- 6. Let V and W be vector spaces and let T be a linear transformation from V to W.
 - (a) Prove that the kernel of T (also called the null space of T) is a subspace of V.

(b) Prove that T is one-to-one if and only if the kernel of T is $\{0\}$.

(c) Suppose that T is one-to-one and $\{v_1, v_2, \ldots v_n\}$ is a set of n linearly independent vectors in V. Prove that $\{T(v_1), T(v_2), \ldots T(v_n)\}$ is linearly independent in W.

- 7. Let P_n be the vector space of polynomials in x with real coefficients of degree at most n. Define $T: P_2 \to P_3$ by $T(f) = \int_0^x f(t) dt$. You may assume that T is linear.
 - (a) Compute $T(a + bx + cx^2)$ where $a, b, c \in \mathbb{R}$.

(b) Compute the matrix of T with respect to the bases $\{1, x, x^2\}$ of P_2 and $\{1, x, x^2, x^3\}$ of P_3 .

8. (a) Let V be a vector space and $T: V \to V$ and $U: V \to V$ be linear transformations that commute, i.e. $T \circ U = U \circ T$. Let $v \in V$ be an eigenvector of T such that $U(v) \neq 0$. Prove that U(v) is also an eigenvector of T.

(b) Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that has 0 as an eigenvalue. What are the possible values of the rank of T? Justify your answer.