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Algebra Practice Exam 3

1. Let G be a group and let I(G) = {x ∈ G : x = x−1}.
(a) Show that if G is abelian, then I(G) is a subgroup of G.

(b) Show that if G is finite and I(G) 6= {e}, then G must have even order.

(c) Give an example of a group G for which I(G) is not a subgroup of G.
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2. Let G be a group.

(a) Let g, h ∈ G. Prove that for all integers k ≥ 1,

(h−1gh)k = h−1gkh.

(b) Let N be a normal subgroup of G and suppose that N is cyclic. Let H be a subgroup
of N . Prove that H is a normal subgroup of G.
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3. Consider the group S12 of permutations of the set {1, 2, 3, . . . , 12}.
(a) Give an example of an even permutation σ ∈ S12. Don’t forget to justify your

answer.

(b) Give an example of a permutation τ ∈ S12 that has order 14. Don’t forget to justify
your answer.

(c) Prove that no element of S12 has order 13.
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4. Let R be a ring.

(a) Define what it means for a subset I ⊆ R to be an ideal of R.

If you use any other technical terms like “closed,” “subring,” “group,” “subgroup,”
etc., you must fully define those terms as well.

(b) Let I ⊆ R be an ideal of R, and suppose that xy−yx ∈ I for every x, y ∈ R. Prove
that the quotient ring R/I is commutative.
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