## Amherst College <br> Department of Mathematics and Statistics

# Comprehensive Examination <br> $\triangleleft$ Algebra $\triangleright$ <br> Practice Exam 3 

## Number:

$\qquad$

## Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Algebra Exam consists of Questions 1-4 that total to 100 points.


## For Department Use Only:

Grader \#1: $\qquad$
Grader \#2: $\qquad$

1. Let $G$ be a group and let $I(G)=\left\{x \in G: x=x^{-1}\right\}$.
(a) Show that if $G$ is abelian, then $I(G)$ is a subgroup of $G$.
(b) Show that if $G$ is finite and $I(G) \neq\{e\}$, then $G$ must have even order.
(c) Give an example of a group $G$ for which $I(G)$ is not a subgroup of $G$.
2. Let $G$ be a group.
(a) Let $g, h \in G$. Prove that for all integers $k \geq 1$,

$$
\left(h^{-1} g h\right)^{k}=h^{-1} g^{k} h .
$$

(b) Let $N$ be a normal subgroup of $G$ and suppose that $N$ is cyclic. Let $H$ be a subgroup of $N$. Prove that $H$ is a normal subgroup of $G$.
3. Consider the group $S_{12}$ of permutations of the set $\{1,2,3, \ldots, 12\}$.
(a) Give an example of an even permutation $\sigma \in S_{12}$. Don't forget to justify your answer.
(b) Give an example of a permutation $\tau \in S_{12}$ that has order 14. Don't forget to justify your answer.
(c) Prove that no element of $S_{12}$ has order 13.
4. Let $R$ be a ring.
(a) Define what it means for a subset $I \subseteq R$ to be an ideal of $R$.

If you use any other technical terms like "closed," "subring," "group," "subgroup," etc., you must fully define those terms as well.
(b) Let $I \subseteq R$ be an ideal of $R$, and suppose that $x y-y x \in I$ for every $x, y \in R$. Prove that the quotient ring $R / I$ is commutative.

