Amherst College
 Department of Mathematics and Statistics

Comprehensive Examination
 \triangleleft AnALYSIS \triangleright
 Practice Exam 3

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Analysis Exam consists of Questions 1-4 that total to 100 points.

For Department Use Only:

Grader \#1: \qquad
Grader \#2: \qquad

1. Consider the sequence $\left(a_{n}\right)$ defined recursively as follows.

$$
a_{1}=2 \quad \text { and } \quad a_{n+1}=5-\frac{4}{a_{n}} \quad \text { for } \quad n \geq 1
$$

(a) Prove that for $n \geq 1, a_{n+1} \geq a_{n}$.
(b) Prove that the sequence $\left(a_{n}\right)$ is bounded from above.
(c) Prove that the sequence $\left(a_{n}\right)$ converges and find $\lim _{n \rightarrow \infty} a_{n}$.
2. (a) Let $\left(a_{n}\right)$ be a sequence of real numbers. State the $\epsilon-N$ definition of what it means for $\left(a_{n}\right)$ to converge to $a \in \mathbf{R}$.
(b) Suppose that the sequence of real numbers $\left(a_{n}\right)$ converges to $a \in \mathbf{R}$. Prove using the above definition that the sequence $\left(\left|a_{n}\right|\right)$ converges to $|a|$.
3. (a) State the Mean Value Theorem.
(b) Suppose that $f: A \rightarrow \mathbf{R}$ is a real-valued function on a set $A \subseteq \mathbf{R}$. Define what it means for f to be uniformly continuous on A.
(c) Suppose that f is a real-valued function defined on the entire real line. Use the Mean Value Theorem to prove that if $f^{\prime}(x)$ exists and is bounded on all of \mathbf{R}, then f is uniformly continuous on \mathbf{R}.
4. (a) State the Weierstrass M-test.
(b) Use part (a) to show that for any $r \in(0,1)$ the function $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ is welldefined and continuous on $[-r, r]$.

