Comprehensive Examination

\triangleleft Multivariable Calculus and Linear Algebra \triangleright Practice Exam 3

Number:

\qquad

Read This First:

- This is a closed-book examination. No books, notes, cell phones, electronic devices of any sort, or other aids are permitted. Cell phones are to be silenced and out of sight.
- Write your number (not your name) in the above space.
- For any given problem, you may use the back of the previous page for scratch work. Put your final answers in the spaces provided.
- Additional sheets of paper will be available if you need them. If you use an additional sheet, label it carefully and be sure to include your number.
- In order to receive full credit on a problem, solution methods must be complete, logical and understandable. Show all your work, and justify your answers.
- The Multivariable Calculus and Linear Algebra Exam consists of Questions 1-8 that total to 200 points.

For Department Use Only:

GRader \#1: \qquad
Grader \#2: \qquad

1. Find an equation for the plane that passes through the point $(2,4,1)$ and contains the line

$$
x=5-3 t, y=2+t, z=4-6 t .
$$

2. A flat circular metal plate has the shape of the disk $x^{2}+y^{2} \leq 4$. The plate (including the boundary) is heated so that the temperature at a point (x, y) on the plate is given by $T(x, y)=x^{2}+2 y^{2}-2 y$. Find the temperatures at the hottest and coldest points on the plate and state all points where these extrema occur.
3. Let $f(x, y)= \begin{cases}\frac{y^{2}(2 x-y)}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
(a) Compute $f_{x}(0,0)$ and $f_{y}(0,0)$.
(b) Is f continuous at $(0,0)$? Justify your answer. This is no longer on the Comps syllabus.
4. Find the volume of the region inside the cylinder $x^{2}+y^{2}=1$, above the $x y$-plane $z=0$, and below the plane $x+z=1$.
5. (a) Suppose that V is a vector space. Explain what it means to say that a subset W of V is a subspace.
(b) Let V_{1} and V_{2} be vector spaces and let $T: V_{1} \rightarrow V_{2}$ be a linear transformation. For $W_{2} \subseteq V_{2}$, let $W_{1}=\left\{v \in V_{1}: T(v) \in W_{2}\right\}$. Show that if W_{2} is a subspace of V_{2} then W_{1} is a subspace of V_{1}.
6. (a) Explain what it means to say that a subset S of a vector space V is a basis of V.
(b) Give a basis for the subspace of \mathbb{R}^{3} spanned by the vectors

$$
\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-4 \\
2 \\
-2
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right] .
$$

You should explain how you know that your answer really is a basis; namely, you should relate your answer to the definition you gave in part (a) for full credit.
7. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map such that $\|T(\mathbf{x})\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Prove that T is an isomorphism.
8. Let A be the matrix $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(a) Define what it means for a real number $\lambda \in \mathbb{R}$ to be an eigenvalue of A.
(b) Find all eigenvectors of A.
(c) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, or show that no such matrices exist.

