Math 12: Final Exam

Name:

Instructions: There are 8 questions on this exam for a total of 100 points. You may not use any outside materials (eg. notes, calculators, cell phones, etc.). You have 3 hours to complete this exam. Remember to fully justify your answers.

Problem 1 (12 Points). Find the following limits:
(a) $\lim _{x \rightarrow 3} \frac{\ln x-2}{x^{2}-3 x}$
(b) $\lim _{x \rightarrow 0} \frac{\sinh x}{x}$
(c) $\lim _{x \rightarrow 0} x \cot x$

Problem 2 (12 Points). Evaluate the following integrals:
(a) $\int \frac{x+3}{\sqrt{9-x^{2}}} d x$.
(b) $\int \frac{d x}{x^{3}+x^{2}-2 x}$.
(c) $\int x \sec ^{2} x d x$.

Problem 3 (8 Points). For each of the following improper integrals, determine whether it converges or diverges, and if it converges, find its value.
(a) $\int_{1}^{\infty} \frac{d x}{x^{2}-2 x+5}$.
(b) $\int_{0}^{9} \frac{d x}{(x-1)^{4 / 3}}$.

Problem 4 (8 Points). Let R be the region bounded by the curves $y=x^{2}$ and $y=x+2$.
(a) Set up (but don't evaluate) an integral for the volume of the solid obtained by rotating R about the x-axis.
(b) Set up (but don't evaluate) an integral for the volume of the solid obtained by rotating R about the line $x=2$.

Problem 5 (10 Points). Consider the curve given by $x=\sin ^{3} t$ and $y=\cos ^{3} t$ from $t=0$ to $t=\frac{\pi}{2}$.
(a) Find the tangent line(s) to the curve at $\left(\frac{3 \sqrt{3}}{8}, \frac{1}{8}\right)$.
(b) Find the length of the curve.

Problem 6 (6 Points). Let C_{1} be the curve given by the polar coordinates equation $r=2 \sin \theta$, $0 \leq \theta \leq \pi$, and let C_{2} be the curve given by the polar coordinates equation $r=1$. Find the area of the region inside C_{1} and outside C_{2}.

Problem 7 (6 Points). Find the area of the surface obtained when the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ for $1 \leq x \leq 2$ is rotated about the y-axis.

Problem 8 (12 Points). Determine whether each series converges absolutely, converges conditionally, or diverges. Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{\cos (n+10)}{n^{2}+10 n}$.
(b) $\sum_{n=1}^{\infty} \frac{n!}{2^{n} n^{2}}$.
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+2}$.

Problem 9 (8 Points). Find the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{2^{n} \ln n}$.
Problem 10 (6 Points). Find the Taylor series for $\frac{1}{x}$ about 1.
Problem 11 (6 Points).
(a) Find a formula for the finite sum $\sum_{k=1}^{n}\left[\frac{k-1}{2 k-1}-\frac{k}{2 k+1}\right]$. (Hint: Write out a few terms.)
(b) Find $\sum_{k=1}^{\infty}\left[\frac{k-1}{2 k-1}-\frac{k}{2 k+1}\right]$.

Problem 12 (10 Points). Use power series to estimate $\int_{0}^{1 / 2} \frac{\ln (1+x)}{x} d x$ to within $1 / 100$.

