Math 12: Final Exam

Name:

Instructions: There are 8 questions on this exam for a total of 100 points. You may not use any outside materials (eg. notes, calculators, cell phones, etc.). You have 3 hours to complete this exam. Remember to fully justify your answers.

Problem 1 (12 Points). Find the following limits:

- (a) $\lim_{x\to 3} \frac{\ln x 2}{x^2 3x}$
- (b) $\lim_{x\to 0} \frac{\sinh x}{x}$
- (c) $\lim_{x\to 0} x \cot x$

Problem 2 (12 Points). Evaluate the following integrals:

- (a) $\int \frac{x+3}{\sqrt{9-x^2}} \, dx.$
- (b) $\int \frac{dx}{x^3 + x^2 2x}$.
- (c) $\int x \sec^2 x \, dx$.

Problem 3 (8 Points). For each of the following improper integrals, determine whether it converges or diverges, and if it converges, find its value.

- (a) $\int_{1}^{\infty} \frac{dx}{x^2 2x + 5}$.
- (b) $\int_0^9 \frac{dx}{(x-1)^{4/3}}$.

Problem 4 (8 Points). Let R be the region bounded by the curves $y = x^2$ and y = x + 2.

- (a) Set up (but don't evaluate) an integral for the volume of the solid obtained by rotating R about the x-axis.
- (b) Set up (but don't evaluate) an integral for the volume of the solid obtained by rotating R about the line x = 2.

Problem 5 (10 Points). Consider the curve given by $x = \sin^3 t$ and $y = \cos^3 t$ from t = 0 to $t = \frac{\pi}{2}$.

- (a) Find the tangent line(s) to the curve at $\left(\frac{3\sqrt{3}}{8}, \frac{1}{8}\right)$.
- (b) Find the length of the curve.

Problem 6 (6 Points). Let C_1 be the curve given by the polar coordinates equation $r = 2\sin\theta$, $0 \le \theta \le \pi$, and let C_2 be the curve given by the polar coordinates equation r = 1. Find the area of the region inside C_1 and outside C_2 .

Problem 7 (6 Points). Find the area of the surface obtained when the curve $y = \frac{x^3}{6} + \frac{1}{2x}$ for $1 \le x \le 2$ is rotated about the y-axis.

Problem 8 (12 Points). Determine whether each series converges absolutely, converges conditionally, or diverges. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos(n+10)}{n^2+10n}.$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!}{2^n n^2}$$
.

(c)
$$\sum_{n=0}^{\infty} (-1)^n \frac{\sqrt{n}}{n+2}$$
.

Problem 9 (8 Points). Find the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n}$.

Problem 10 (6 Points). Find the Taylor series for $\frac{1}{x}$ about 1.

Problem 11 (6 Points).

(a) Find a formula for the finite sum $\sum_{k=1}^{n} \left[\frac{k-1}{2k-1} - \frac{k}{2k+1} \right]$. (Hint: Write out a few terms.)

(b) Find
$$\sum_{k=1}^{\infty} \left[\frac{k-1}{2k-1} - \frac{k}{2k+1} \right].$$

Problem 12 (10 Points). Use power series to estimate $\int_0^{1/2} \frac{\ln(1+x)}{x} dx$ to within 1/100.