Math 13 Spring 2020: Exam 2

March 30, 2010

Name:

Instructions: There are 4 questions on this exam each scored out of 8 points for a total of 32 points. You may not use any outside materials(eg. notes or calculators). You have 50 minutes to complete this exam. Remember to fully justify your answers.

Score:

Problem 1. Evaluate the following limits or show that they do not exist.

- (a) $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x+y^2}$
- (b) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$

Proof.

(a) We get

$$\left|\frac{3x^2y}{x+y^2}\right| \le |3xy|$$

Additionally,

$$\lim_{(x,y)\to(0,0)} |3xy| = 0.$$

Therefore by the squeeze theorem

$$\lim_{(x,y)\to(0,0)}\frac{3x^2y}{x+y^2} = 0.$$

(b) We consider paths of the form y = mx to get

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2} = \lim_{x\to 0}\frac{mx^2}{x^2(1+m^2)} = \frac{m}{1+m^2}.$$

Since this depends on m, different paths gives different values, so the limit does not exist.

Problem 2. Given that $z = f(x^2 + y^2, x^2 - y^2)$.

- (a) Compute z_{xy} .
- (b) Approximate z at (x, y) = (1.1, 0.9) if f(2, 0) = 7, $f_s(2, 0) = 1$, and $f_t(2, 0) = -2$ where $s = x^2 + y^2$ and $t = x^2 y^2$.

Proof.

(a) We set $s = x^2 + y^2$ and $t = x^2 - y^2$ and use the chain rule to compute

$$z_x = 2x(f_s + f_t)$$

and

$$z_{xy} = 2x(f_{ss}2y + f_{st}(-2y) + f_{ts}(2y) + f_{tt}(-2y)).$$

(b) We make the approximation

$$z = z_0 + z_x \Delta x + z_y \Delta y$$

= 7 + 2x(f_s + f_t) $\frac{1}{10}$ + 2y(f_s - f_t) $\left(-\frac{1}{10}\right)$
= 7 + 2(1 - 2) $\frac{1}{10}$ + 2(1 + 2) $\left(-\frac{1}{10}\right)$
= 7 - $\frac{2}{10}$ - $\frac{6}{10}$ = $6\frac{1}{5}$.

or we could approximate

$$z = z_0 + z_s \Delta s + z_t \Delta t$$

= 7 + 1(1.1² + 0.9² - 2) - 2(1.1² - 0.9²)
= 7 + 0.02 - 0.8 = 6.22.

-	-	-	1	
L			L	
			L	
			L	
-	_	-		

Problem 3. Find and classify the critical points of $f(x, y) = xy - \frac{x^4}{4} - \frac{y^4}{4}$. *Proof.* We have

$$f_x = y - x^3$$
$$f_y = x - y^3$$

There are three critical points (0,0), (-1,-1), and (1,1). The second derivatives are

$$f_{xx} = -3x^2$$
$$f_{xy} = 1$$
$$f_{yy} = -3y^2$$

So we have

$$D(-1,-1) = 9 - 1 = 8 \quad f_{xx}(-1,-1) = -3$$
$$D(1,1) = 9 - 1 = 8 \quad f_{xx}(1,1) = -3$$
$$D(0,0) = -1$$

By the second derivative test we have (-1, -1) and (1, 1) are relative maximums and (0, 0) is a saddle point.

Problem 4. Find the maximum and minimum values of $f(x, y) = 4x^2 + 10y^2$ on the disk $x^2 + y^2 \le 4$.

Proof. We take first derivatives

$$f_x = 8x$$
 and $f_y = 20y$

to get the critical point (0,0) which is in the region.

Using Lagrange multiplier for f(x, y) with the constraint $x^2 + y^2 = 4$ we solve the system

$$8x = \lambda 2x$$
$$20y = \lambda 2y$$
$$x^2 + y^2 = 4.$$

The first equation implies x = 0 or $\lambda = 4$. If x = 0 we have the two points $(0, \pm 2)$. If $\lambda = 4$, then the second equation implies y = 0. Thus we have two more points $(\pm 2, 0)$.

To determine the max and min values we evaluate the function at these 5 points to get: f(0,0) = 0 for the min, $f(0, \pm 2) = 40$ for the max.