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• Prelude
• The analytic solution to the Harmonic 

oscillator Schrödinger equation



Prelude
• Show film loop of a time-dependent 

superposition of waves for the particle in a 
box. 

• Discuss probability for the reflection off of a 
cliff problem.  Distinguish probability and 
probability flux.

• Show film loop for reflection from a well with 
different slopes of edges.

• Wave packet evolution in a potential well 
http://www.falstad.com/mathphysics.html#qm



The Analytic Method:
(Power Series)

We again begin with the Schrodinger Equation 
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Now for ξ 2 >> E ' we have the approximate asymptotic equation 
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Thus for large values of ξ  we have the solutions 
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Lets verify that this is indeed a solution 
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Now the increasing exponential is not a normalizable solution.  So we will be 
looking for a solution with the asyptotic limit: 
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Note that I now write this as an equality.  What we did above is simply to 
motivate the functional form.  We are “peeling off” the asymptotic limit in 
the hope that the remaining part of the solution will be simpler.  Let’s see 
what we now require for h ( )ξ . 
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Thus the Schrodinger Equation     becomes 
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 We will look for a solution to the SE for h in the form of a power series  
(Taylor’s theorem says that this is OK for any smooth function).  We assume
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Notice that the first two terms of this last series are zero so we could move 
the index up by 2.  i.e. 
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Putting this into the S.E. for h       yields 
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To be true for arbitrary values of ξ j  it must be true that the coefficient of 
each term must vanish.  ie. 
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This yields the recursion relation for the coefficients: 
 

( )( ) jj a
jj

Eja
21
'12

2 ++
−+

=+  

 
Given an a0 and an a1 we can in principle find all the coefficients of the 
power series expansion!  These first two terms are the 2 arbitrary constants 
required for the solution of a second order differential equation. 
 
 



Theorem: Solutions to Symmetric 
Potentials can always be taken to be 

either even or odd.

( ) ( ) ( )xExxV
dx

xd
m

ψψψ
=+− )(

2 2

22h

( ) ( ) ( )xExxV
dx

xd
m

−=−−+
−

− ψψψ )(
2 2

22h

2
2

2
2

)(: xxNote
∂

∂=
−∂

∂

( ) ( ) ( )xExxV
dx

xd
m

−=−+
−

− ψψψ )(
2 2

22h

Proof: Assume ψ(x) is a solution to the S.E.

Let x => -x



So ψ(-x) is also a solution to the S.E.  

Hence we can construct even and odd solutions that must also 
satisfy the S.E.
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Hence any solution to the S.E. with a symmetric potential can be
expressed as a linear combination of even and odd solutions (QED).

(even in x)

(odd in x)



symmetric and antisymmetric 
wave functions
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Square well from x = -100 to 100 ,V(-x) = V(x).  
ψ(-x) is a solution to the SE.  
ψ(x) can be written in terms of symmetric and anti-
symmetric solutions to the SE.  



Psi(x)
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Square well from x = 0 to 200 ,(V(-x) is not equal to V(x).  
ψ(-x) is not a solution to the SE.  
ψ(x) can not be written in terms of symmetric and anti-
symmetric solutions to the SE.  



Note: Also useful for numerical 
solutions

• One can use this theorem to simplify 
numerical solutions.

• For a symmetric potential, one may 
always begin at the origin with either
ψ = 0 (anti-symmetric solutions)

or dψ/dx = 0 (symmetric solution).
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