Math 12: Final Exam

Name:

Instructions: There are 8 questions on this exam for a total of 100 points. You may not use any outside materials (eg. notes, calculators, cell phones, etc.). You have 3 hours to complete this exam. Remember to fully justify your answers.

Problem 1 (12 Points). Find the following limits:
(a) $\lim _{x \rightarrow 3} \frac{\ln x-2}{x^{2}-3 x}$
(b) $\lim _{x \rightarrow 0} \frac{\sinh x}{x}$
(c) $\lim _{x \rightarrow 0} x \cot x$

Proof.
(a) This is of the form $\frac{0}{0}$ so we apply l'Hopital's rule to get

$$
\lim _{x \rightarrow 3} \frac{\ln x-2}{x^{2}-3 x}=\lim _{x \rightarrow 1} \frac{1 /(x-2)}{2 x-3}=\frac{1}{3}
$$

(b) This is of the form $\frac{0}{0}$ so we apply l'Hopital's rule to get

$$
\lim _{x \rightarrow 0} \frac{\sinh x}{x}=\lim _{x \rightarrow 0} \frac{1 / 2\left(e^{x}-e^{-x}\right)}{x}=\lim _{x \rightarrow 0} \frac{1 / 2\left(e^{x}+e^{-x}\right)}{1}=1 .
$$

(c) This is of the form $0 \cdot \infty$ so we apply l'Hopital's rule to the fraction

$$
\lim _{x \rightarrow 0} x \cot x=\lim _{x \rightarrow 0} \frac{x}{\tan x}=\lim _{x \rightarrow 0} \frac{1}{\sec ^{2} x}=1 .
$$

Problem 2 (12 Points). Evaluate the following integrals:
(a) $\int \frac{x+3}{\sqrt{9-x^{2}}} d x$.
(b) $\int \frac{d x}{x^{3}+x^{2}-2 x}$.
(c) $\int x \sec ^{2} x d x$.

Proof.
(a) We make the trig substitution $x=3 \sin \theta$

$$
\begin{aligned}
\int \frac{x+3}{\sqrt{9-x^{2}}} d x & =\int \frac{3 \sin \theta+3}{\sqrt{9-9 \sin ^{2} \theta}} 3 \cos \theta d \theta \\
& =\int 3 \sin \theta+3 d \theta \\
& =-3 \cos \theta+3 \theta+C \\
& =-\sqrt{9-x^{2}}+3 \arcsin \frac{x}{3}+C
\end{aligned}
$$

(b) We factor and use partial fractions to see

$$
\frac{1}{x^{3}+x^{2}-2 x}=\frac{1}{x(x+2)(x-1)}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{x-1}
$$

and so we have to solve

$$
A(x+2)(x-1)+B x(x-1)+C x(x+2)=1
$$

So we choose $x=0$ to get $A=-\frac{1}{2}, x=-2$ to get $B=\frac{1}{6}$, and $x=1$ to get $C=\frac{1}{3}$. So we integrate

$$
\begin{aligned}
\int \frac{d x}{x^{3}+x^{2}-2 x} d x & =\int \frac{-1 / 2}{x}+\frac{1 / 6}{x+2}+\frac{1 / 3}{x-1} d x \\
& =-\frac{1}{2} \ln |x|+\frac{1}{6} \ln |x+2|+\frac{1}{3} \ln |x-1|+C
\end{aligned}
$$

(c) Applying integration by parts with $u=x$ and $d v=\sec ^{2} x d x$ we get

$$
\int x \sec ^{2} x d x=x \tan x-\int \tan x d x=x \tan x+\ln |\cos x|+C
$$

Problem 3 (8 Points). For each of the following improper integrals, determine whether it converges or diverges, and if it converges, find its value.
(a) $\int_{1}^{\infty} \frac{d x}{x^{2}-2 x+5}$.
(b) $\int_{0}^{9} \frac{d x}{(x-1)^{4 / 3}}$.

Proof.
(a) This is an improper integral and we need to complete the square in the denominator to get

$$
\int_{1}^{\infty} \frac{d x}{x^{2}-2 x+5}=\lim _{c \rightarrow \infty} \int_{1}^{c} \frac{d x}{(x-1)^{2}+4}
$$

We notice that this is of the form $\frac{1}{u^{2}+a^{2}}$ with $a=2$ and $u=x-1$ so we get

$$
\begin{aligned}
\lim _{c \rightarrow \infty} \int_{1}^{c} \frac{d x}{(x-1)^{2}+4}=\lim _{c \rightarrow \infty}\left(\frac{1}{2} \arctan \frac{x-1}{2}\right)_{1}^{c} & \\
& =\lim _{c \rightarrow \infty} \frac{1}{2} \arctan \frac{c-1}{2}=\frac{1}{2} \frac{\pi}{2}=\frac{\pi}{4}
\end{aligned}
$$

So this integral converges and has value $\frac{\pi}{4}$.
(b) Notice that there is a discontinuity at $x=1$ so we have

$$
\int_{0}^{9} \frac{d x}{(x-1)^{4 / 3}}=\lim _{c \rightarrow 1} \int_{0}^{c} \frac{d x}{(x-1)^{4 / 3}}+\lim _{d \rightarrow 1} \int_{d}^{9} \frac{d x}{(x-1)^{4 / 3}}
$$

Since

$$
\int \frac{d x}{(x-1)^{4 / 3}}=-3(x-1)^{-1 / 3}
$$

we get

$$
\int_{0}^{9} \frac{d x}{(x-1)^{4 / 3}}=\left(\lim _{c \rightarrow 1}-3(c-1)^{-1 / 3}-3\right)+\left(\lim _{d \rightarrow 1}-3(d-1)^{-1 / 3}+\frac{3}{2}\right)=\infty
$$

so this integral diverges.

Problem 4 (8 Points). Let R be the region bounded by the curves $y=x^{2}$ and $y=x+2$.
(a) Set up (but don't evaluate) an integral for the volume of the solid obtained by rotating R about the x-axis.
(b) Set up (but don't evaluate) an integral for the volume of the solid obtained by rotating R about the line $x=2$.

Proof. The intersection points of the curve and the line are $x=-1$ and $x=2$.
(a) The cross sections are washers so we have

$$
V=\pi \int_{-1}^{2}(x+2)^{2}-\left(x^{2}\right)^{2} d x
$$

(b) The cross sections are cylindrical shells so we have

$$
V=2 \pi \int(2-x)\left(x+2-x^{2}\right) d x
$$

Problem 5 (10 Points). Consider the curve given by $x=\sin ^{3} t$ and $y=\cos ^{3} t$ from $t=0$ to $t=\frac{\pi}{2}$.
(a) Find the tangent line(s) to the curve at $\left(\frac{3 \sqrt{3}}{8}, \frac{1}{8}\right)$.
(b) Find the length of the curve.

Proof. We compute

$$
\begin{aligned}
x^{\prime} & =3 \sin ^{2} t \cos t \\
y^{\prime} & =-3 \cos ^{2} t \sin t .
\end{aligned}
$$

(a) The t value for this point occurs where $\cos t=\frac{1}{2}$ and so $t=\frac{\pi}{3}$. So the tangent line has slope

$$
\frac{d y}{d x}=\frac{y^{\prime}}{x^{\prime}}=-\frac{\cos t}{\sin t}=-\frac{1}{\sqrt{3}} .
$$

Then the line is given by

$$
y-\frac{1}{8}=-\frac{1}{\sqrt{3}}\left(x-\frac{3 \sqrt{3}}{8}\right)
$$

which simplifies to

$$
y=-\frac{1}{\sqrt{3}} x+\frac{1}{2}
$$

(b) For the arclength we have

$$
\begin{aligned}
s & =\int_{0}^{\pi / 2} \sqrt{9 \sin ^{4} t \cos ^{2} t+9 \cos ^{4} t \sin ^{2} t} d t \\
& =\int_{0}^{\pi / 2} \sqrt{9 \sin ^{2} t \cos ^{2} t\left(\sin ^{2} t+\cos ^{2} t\right)} d t \\
& =\int_{0}^{\pi / 2} 3 \sin t \cos t d t \\
& =\left(\frac{3}{2} \sin ^{2} t\right)_{0}^{\pi / 2}=\frac{3}{2} .
\end{aligned}
$$

Problem 6 (6 Points). Let C_{1} be the curve given by the polar coordinates equation $r=2 \sin \theta$, $0 \leq \theta \leq \pi$, and let C_{2} be the curve given by the polar coordinates equation $r=1$. Find the area of the region inside C_{1} and outside C_{2}.

Proof. $r=1$ is a circle of radius 1 centered at $(0,0)$ and $r=2 \sin \theta$ is a circle of radius 1 centered at $(0,1)$. We find the points of intersection as

$$
2 \sin \theta=1
$$

and so $\theta=\left\{\frac{\pi}{4}, \frac{3 \pi}{4}\right\}$. So we have for the area

$$
\begin{aligned}
A & =\int_{\pi / 4}^{3 \pi / 4} \frac{1}{2}\left(4 \sin ^{2} \theta-1\right) d \theta \\
& =\int_{\pi / 4}^{3 \pi / 4} 2\left(\frac{1}{2}(1-\cos 2 \theta)\right)-\frac{1}{2} d \theta \\
& =\int_{\pi / 4}^{3 \pi / 4} \frac{1}{2}-\cos 2 \theta d \theta \\
& =\left(\frac{\theta}{2}-\frac{\sin 2 \theta}{2}\right)_{\pi / 4}^{3 \pi / 4} \\
& =\frac{3 \pi}{8}+\frac{1}{2}-\frac{\pi}{8}+\frac{1}{2} \\
& =\frac{\pi}{4}+1
\end{aligned}
$$

Problem 7 (6 Points). Find the area of the surface obtained when the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ for $1 \leq x \leq 2$ is rotated about the y-axis.

Proof. We compute

$$
y^{\prime}=\frac{1}{2} x^{2}-\frac{1}{2 x^{2}}
$$

and so

$$
1+\left(y^{\prime}\right)^{2}=\frac{1}{4} x^{4}+\frac{1}{2}+\frac{1}{4 x^{4}}=\left(\frac{1}{2} x^{2}+\frac{1}{2 x^{2}}\right)^{2}
$$

So we have

$$
\begin{aligned}
S & =2 \pi \int_{1}^{2} x\left(\frac{1}{2} x^{2}+\frac{1}{2 x^{2}}\right) d x=2 \pi\left(\frac{1}{8} x^{4}+\frac{1}{2} \ln |x|\right)_{1}^{2} \\
& =2 \pi\left(2+\ln 2-\frac{1}{8}-0\right)=2 \pi\left(\frac{7}{8}+\ln 2\right) .
\end{aligned}
$$

Problem 8 (12 Points). Determine whether each series converges absolutely, converges conditionally, or diverges. Justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{\cos (n+10)}{n^{2}+10 n}$.
(b) $\sum_{n=1}^{\infty} \frac{n!}{2^{n} n^{2}}$.
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+2}$.

Proof.
(a) We know that $|\cos x| \leq 1$ and so

$$
\sum_{n=1}^{\infty}\left|\frac{\cos (n+10)}{n^{2}+10 n}\right| \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}+10 n} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

The last sequence is a p-series with $n=2$ and so is convergent, so by the comparison test $\sum_{n=1}^{\infty}\left|\frac{\cos (n+10)}{n^{2}+10 n}\right|$ converges and hence $\sum_{n=1}^{\infty} \frac{\cos (n+10)}{n^{2}+10 n}$ converges absolutely.
(b) Applying the ratio test we see

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{(n+1)!}{2^{n+1}(n+1)^{2}} \cdot \frac{2^{n} n^{2}}{n!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1) n^{2}}{2(n+1)^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2} \frac{n^{2}}{n+1}=\infty
\end{aligned}
$$

So the series diverges.
(c) Applying the alternating series test we have that the series is decreasing since

$$
a_{n+1}=\frac{\sqrt{n+1}}{n+3}<\frac{\sqrt{n}}{n+2}=a_{n}
$$

and that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+2}=0
$$

so the series is convergent. However, using the limit comparison test with the divergent series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ with the series $\sum_{n=0}^{\infty}\left|(-1)^{n} \frac{\sqrt{n}}{n+2}\right|=\sum_{n=0}^{\infty} \frac{\sqrt{n}}{n+2}$ we get

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+2} \cdot \sqrt{n}=\lim _{n \rightarrow \infty} \frac{n}{n+2}=1
$$

and so both series diverge and hence $\sum_{n=0}^{\infty}\left|(-1)^{n} \frac{\sqrt{n}}{n+2}\right|$ is conditionally convergent.

Problem 9 (8 Points). Find the interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{2^{n} \ln n}$.

Proof. We apply the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{2^{n+1} \ln (n+1)} \cdot \frac{2^{n} \ln n}{(x+2)^{n}}\right|=\lim _{n \rightarrow \infty}|x+2|\left|\frac{\ln (n+1)}{\ln n}\right| .
$$

We apply L'Hopital's Rule to get

$$
\lim _{n \rightarrow \infty}|x+2|\left|\frac{\ln (n+1)}{\ln n}\right|=\lim _{n \rightarrow \infty}\left|\frac{x+2}{2}\right|\left|\frac{n}{n+1}\right|=\left|\frac{x+2}{2}\right| .
$$

So we have $R=2$ and convergence for $-4<x<0$. We now check the end points.
For $x=0$ we have the series

$$
\sum_{n=2}^{\infty} \frac{1}{\ln n}
$$

and we know $\frac{1}{\ln n}>\frac{1}{n}$ for all $n \geq 2$. Also $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges as p-series. So we have that $\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{2^{n} \ln n}$ diverges at $x=0$.

For $x=-4$ we have

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}
$$

so we apply the alternating series test. Since $\ln x$ is an increasing function $\frac{1}{\ln x}$ is a decreasing function and so $a_{n+1}<a_{n}$ for all $n \geq 2$. We also know $\lim _{n \rightarrow \infty} \ln n=\infty$ and so $\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$. So this is a convergent alternating series.

Therefore, the interval of convergence is $-4 \leq x<0$ or $[-4,0)$.
Problem 10 (6 Points). Find the Taylor series for $\frac{1}{x}$ about 1.
Proof. Successively taking derivatives we see that

$$
f^{(n)}(x)=\frac{(-1)^{n} n!}{x^{n+1}}
$$

So we get that

$$
c_{n}=\frac{f^{(n)}(x)}{n!}=(-1)^{n} .
$$

Therefore, the series is

$$
\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}
$$

Problem 11 (6 Points).
(a) Find a formula for the finite sum $\sum_{k=1}^{n}\left[\frac{k-1}{2 k-1}-\frac{k}{2 k+1}\right]$. (Hint: Write out a few terms.)
(b) Find $\sum_{k=1}^{\infty}\left[\frac{k-1}{2 k-1}-\frac{k}{2 k+1}\right]$.

Proof.
(a) We have the telescoping sum

$$
\begin{aligned}
\sum_{k=1}^{n}\left[\frac{k-1}{2 k-1}-\frac{k}{2 k+1}\right] & =\left(0-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{2}{5}\right)+\left(\frac{2}{5}-\frac{3}{7}\right)+\cdots+\left(\frac{n-1}{2 n-1}-\frac{n}{2 n+1}\right) \\
& =-\frac{n}{2 n+1}
\end{aligned}
$$

(b) Since the sum of a series is the limit of its sequence of partial sums we have

$$
\sum_{k=1}^{\infty}\left[\frac{k-1}{2 k-1}-\frac{k}{2 k+1}\right]=\lim _{n \rightarrow \infty}-\frac{n}{2 n+1}=-\frac{1}{2}
$$

Problem 12 (10 Points). Use power series to estimate $\int_{0}^{1 / 2} \frac{\ln (1+x)}{x} d x$ to within $1 / 100$.
Proof. Recall that the MacLaurin series for $\ln (1+x)$ is given by

$$
\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots
$$

so we have

$$
\frac{\ln (1+x)}{x}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n-1}}{n}=1-\frac{x}{2}+\frac{x^{2}}{3}-\cdots
$$

Evaluating the integral yields

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{\ln (1+x)}{x} & =\left(\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n^{2}}\right)_{0}^{1 / 2}\left(\sum_{n=1}^{\infty} x-\frac{x^{2}}{4}+\frac{x^{3}}{9}-\cdots\right)_{0}^{1 / 2} \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2^{n} n^{2}} \\
& =\frac{1}{2}-\frac{1}{16}+\frac{1}{72}-\frac{1}{400}+\cdots
\end{aligned}
$$

Since this is an alternating series, the remainder $\left|R_{n}\right| \leq a_{n+1}$ so we need the first 3 terms which is

$$
\int_{0}^{1 / 2} \frac{\ln (1+x)}{x} \approx \frac{1}{2}-\frac{1}{16}+\frac{1}{72}
$$

