Solutions to the Algebra problems on the Comprehensive Examination of January 29, 2010

1. (10 Points) Let G and G' be groups, and let $\phi : G \to G'$ and $\psi : G \to G'$ be homomorphisms. Define

$$H = \{g \in G \mid \phi(g) = \psi(g)\}.$$

Prove that H is a subgroup of G.

Solution: (*H* nonempty) Since ϕ and ψ are homomorphisms, $\phi(e_G) = \psi(e_G) = e_{G'}$, so $e_G \in H$, so $H \neq \emptyset$. (*H* closed under group operation) Given $a, b \in H$, since ϕ and ψ are homomorphisms, $\phi(ab) = \phi(a)\phi(b) = \psi(a)\psi(b) = \psi(ab)$ so $ab \in H$. (*H* closed under ⁻¹) Given $a \in H$, since ϕ and ψ are homomorphisms, $\phi(a^{-1}) = (\phi(a))^{-1} = (\psi(a))^{-1} = \psi(a^{-1})$ so $a^{-1} \in H$. Thus *H* is a subgroup of *G* as desired. QED

- 2. (10 Points) Let G be an abelian group. Let T be the set of elements of G that have finite order.
 - (a) Show that T is a subgroup of G.

Solution: (*T* nonempty) o(e) = 1 so $e \in T$, so $T \neq \emptyset$. (*T* closed under group operation) Given $a, b \in T$, by rules of exponentiation (also note that o(a) and o(b) are finite):

$$(ab)^{o(a)o(b)} = (a^{o(a)})^{o(b)} (b^{o(b)})^{o(a)} = e^{o(b)} e^{o(a)} = e.$$

Thus $o(ab) \leq o(a)o(b)$ which means o(ab) is finite, so $ab \in T.\checkmark$ (*T* closed under ⁻¹) Given $a \in T$, o(a) is finite so $(a^{-1})^{o(a)} = (a^{o(a)})^{-1} = e^{-1} = e$. Thus $o(a^{-1}) \leq o(a)$ (in fact they are equal, but that is not important here) so $a^{-1} \in T.\checkmark$

Thus T is a subgroup of G as desired. QED

(b) Show that in G/T, the only element of finite order is the identity.

Solution: Take $a \in G$ such that Ta has finite order o(Ta) = m. Then $T(a^m) = (Ta)^m = Te$, so $a^m = a^m e^{-1} \in T$. But then a^m has finite order. Let $n = o(a^m)$, so $a^{mn} = (a^m)^n = e$, so $o(a) \leq mn$, which means that a has finite order so $a \in T$. Then Ta = Te = T. Since T is the identity element of G/T, it follows that Ta is the identity element, as desired. QED

- 3. (10 Points) Let σ be the permutation (4 2 1)(6 1 3 2) in S_6 .
 - (a) Write σ as a product of disjoint cycles in S_6 .

Solution: $\sigma = (1 \ 3)(2 \ 6 \ 4)$

(b) Compute the **order** of σ .

Solution: The order of σ is the lcm of the orders of each individual cycle (and the order of an *n*-cycle is *n*): $o(\sigma) = \text{lcm}(3, 2) = 6$.

(c) Is σ an even or an odd permutation?

Solution: $\sigma = (1 \ 3)(2 \ 6)(6 \ 4)$ which is the product of 3 transpositions so σ is odd.

4. (10 Points) Let R be a commutative ring and $S \subseteq R$ a subset of R. Define the *annihilator* of S in R to be

$$\operatorname{Ann}(S) = \{ r \in R \, | \, rs = 0 \text{ for every } s \in S \}$$

(a) Show that Ann(S) is an ideal of R.

Solution: First, we show that $(\operatorname{Ann}(S), +)$ is a subgroup of (R, +): $(\operatorname{Ann}(S) \text{ nonempty})$ Trivially $0 \in \operatorname{Ann}(S)$ since $0s = 0 \forall s \in S$, so $\operatorname{Ann}(S) \neq \emptyset.\checkmark$ $(\operatorname{Ann}(S) \text{ closed under } +)$ Given $a, b \in \operatorname{Ann}(S)$ and $s \in S$, (a + b)s = as + bs = 0 + 0 = 0, so $a + b \in \operatorname{Ann}(S).\checkmark$ (I closed under negatives) Given $a \in \operatorname{Ann}(S)$ and $s \in S$, (-a)s = -(as) = -0 = 0, so $-a \in \operatorname{Ann}(S).\checkmark$ Thus $(\operatorname{Ann}(S), +)$ is a subgroup of $(R, +).\checkmark$ Now given $r \in R$, $x \in \operatorname{Ann}(S)$, $s \in S$, (rx)s = r(xs) = r(0) = 0 so $rx \in \operatorname{Ann}(S)$. Similarly (but this time using the commutativity of R), (xr)s = (rx)s = r(xs) = r(0) = 0 so $xr \in \operatorname{Ann}(S).\checkmark$ Thus, I is an ideal of R. QED

(b) If S and T are both subsets of R, show that

$$\operatorname{Ann}(S) \cap \operatorname{Ann}(T) = \operatorname{Ann}(S \cup T).$$

Solution: \subseteq :

Take $x \in \operatorname{Ann}(S) \cap \operatorname{Ann}(T)$ and $y \in S \cup T$, either $y \in S$ or $y \in T$. If $y \in S$, then xy = 0 because $x \in \operatorname{Ann}(S)$ and if $y \in T$, then xy = 0 because $x \in \operatorname{Ann}(T)$. Thus xy = 0 no matter what, so $x \in \operatorname{Ann}(S \cup T)$, so $\operatorname{Ann}(S) \cap \operatorname{Ann}(T) \subseteq \operatorname{Ann}(S \cup T)$. \checkmark \supseteq : Take $x \in \operatorname{Ann}(S \cup T)$:

Given $s \in S \subseteq (S \cup T)$, xs = 0 so $x \in Ann(S)$.

Given $t \in T \subseteq (S \cup T)$, xt = 0 so $x \in Ann(T)$.

Thus, $x \in \operatorname{Ann}(S) \cap \operatorname{Ann}(T)$, so $\operatorname{Ann}(S) \cap \operatorname{Ann}(T) \supseteq \operatorname{Ann}(S \cup T)$.

Thus $\operatorname{Ann}(S) \cap \operatorname{Ann}(T) = \operatorname{Ann}(S \cup T)$ as desired. QED