## Solutions to the Algebra problems on the Comprehensive Examination of January 29, 2010

1. (10 Points) Let $G$ and $G^{\prime}$ be groups, and let $\phi: G \rightarrow G^{\prime}$ and $\psi: G \rightarrow G^{\prime}$ be homomorphisms. Define

$$
H=\{g \in G \mid \phi(g)=\psi(g)\}
$$

Prove that $H$ is a subgroup of $G$.
Solution: ( $H$ nonempty) Since $\phi$ and $\psi$ are homomorphisms, $\phi\left(e_{G}\right)=\psi\left(e_{G}\right)=e_{G^{\prime}}$, so $e_{G} \in H$, so $H \neq \emptyset . \checkmark$
( $H$ closed under group operation) Given $a, b \in H$, since $\phi$ and $\psi$ are homomorphisms, $\phi(a b)=\phi(a) \phi(b)=\psi(a) \psi(b)=\psi(a b)$ so $a b \in H . \checkmark$
$\left(H\right.$ closed under ${ }^{-1}$ ) Given $a \in H$, since $\phi$ and $\psi$ are homomorphisms, $\phi\left(a^{-1}\right)=$ $(\phi(a))^{-1}=(\psi(a))^{-1}=\psi\left(a^{-1}\right)$ so $a^{-1} \in H . \checkmark$
Thus $H$ is a subgroup of $G$ as desired. QED
2. (10 Points) Let $G$ be an abelian group. Let $T$ be the set of elements of $G$ that have finite order.
(a) Show that $T$ is a subgroup of $G$.

Solution: ( $T$ nonempty) $o(e)=1$ so $e \in T$, so $T \neq \emptyset . \checkmark$
( $T$ closed under group operation) Given $a, b \in T$, by rules of exponentiation (also note that $o(a)$ and $o(b)$ are finite):

$$
(a b)^{o(a) o(b)}=\left(a^{o(a)}\right)^{o(b)}\left(b^{o(b)}\right)^{o(a)}=e^{o(b)} e^{o(a)}=e
$$

Thus $o(a b) \leq o(a) o(b)$ which means $o(a b)$ is finite, so $a b \in T . \checkmark$
( $T$ closed under ${ }^{-1}$ ) Given $a \in T, o(a)$ is finite so $\left(a^{-1}\right)^{o(a)}=\left(a^{o(a)}\right)^{-1}=e^{-1}=e$. Thus $o\left(a^{-1}\right) \leq o(a)$ (in fact they are equal, but that is not important here) so $a^{-1} \in T . \checkmark$
Thus $T$ is a subgroup of $G$ as desired. QED
(b) Show that in $G / T$, the only element of finite order is the identity.

Solution: Take $a \in G$ such that $T a$ has finite order $o(T a)=m$. Then $T\left(a^{m}\right)=$ $(T a)^{m}=T e$, so $a^{m}=a^{m} e^{-1} \in T$. But then $a^{m}$ has finite order. Let $n=o\left(a^{m}\right)$, so $a^{m n}=\left(a^{m}\right)^{n}=e$, so $o(a) \leq m n$, which means that $a$ has finite order so $a \in T$. Then $T a=T e=T$. Since $T$ is the identity element of $G / T$, it follows that $T a$ is the identity element, as desired. QED
3. (10 Points) Let $\sigma$ be the permutation (4 21 )(6 132 ) in $S_{6}$.
(a) Write $\sigma$ as a product of disjoint cycles in $S_{6}$.

Solution: $\sigma=\left(\begin{array}{ll}13\end{array}\right)\left(\begin{array}{ll}2 & 6\end{array}\right)$
(b) Compute the order of $\sigma$.

Solution: The order of $\sigma$ is the lcm of the orders of each individual cycle (and the order of an $n$-cycle is $n$ ): $o(\sigma)=\operatorname{lcm}(3,2)=6$.
(c) Is $\sigma$ an even or an odd permutation?

Solution: $\sigma=(13)(26)(64)$ which is the product of 3 transpositions so $\sigma$ is odd.
4. (10 Points) Let $R$ be a commutative ring and $S \subseteq R$ a subset of $R$. Define the annihilator of $S$ in $R$ to be

$$
\operatorname{Ann}(S)=\{r \in R \mid r s=0 \text { for every } s \in S\}
$$

(a) Show that $\operatorname{Ann}(S)$ is an ideal of $R$.

Solution: First, we show that $(\operatorname{Ann}(S),+)$ is a subgroup of $(R,+)$ :
$(\operatorname{Ann}(S)$ nonempty) Trivially $0 \in \operatorname{Ann}(S)$ since $0 s=0 \forall s \in S$, so $\operatorname{Ann}(S) \neq \emptyset \cdot \checkmark$ $(\operatorname{Ann}(S)$ closed under + ) Given $a, b \in \operatorname{Ann}(S)$ and $s \in S,(a+b) s=a s+b s=$ $0+0=0$, so $a+b \in \operatorname{Ann}(S) \cdot \checkmark$
( $I$ closed under negatives) Given $a \in \operatorname{Ann}(S)$ and $s \in S,(-a) s=-(a s)=-0=$ 0 , so $-a \in \operatorname{Ann}(S) \cdot \checkmark$
Thus $(\operatorname{Ann}(S),+)$ is a subgroup of $(R,+) \cdot \checkmark$
Now given $r \in R, x \in \operatorname{Ann}(S), s \in S,(r x) s=r(x s)=r(0)=0$ so $r x \in \operatorname{Ann}(S)$. Similarly (but this time using the commutativity of $R$ ), (xr)s=(rx)s=r(xs)=, = = $r(0)=0$ so $x r \in \operatorname{Ann}(S) \cdot \checkmark$
Thus, $I$ is an ideal of $R$. QED
(b) If $S$ and $T$ are both subsets of $R$, show that

$$
\operatorname{Ann}(S) \cap \operatorname{Ann}(T)=\operatorname{Ann}(S \cup T)
$$

Solution: $\subseteq$ :
Take $x \in \operatorname{Ann}(S) \cap \operatorname{Ann}(T)$ and $y \in S \cup T$, either $y \in S$ or $y \in T$. If $y \in S$, then $x y=0$ because $x \in \operatorname{Ann}(S)$ and if $y \in T$, then $x y=0$ because $x \in \operatorname{Ann}(T)$. Thus $x y=0$ no matter what, so $x \in \operatorname{Ann}(S \cup T)$, so $\operatorname{Ann}(S) \cap \operatorname{Ann}(T) \subseteq \operatorname{Ann}(S \cup T) . \checkmark$〇:
Take $x \in \operatorname{Ann}(S \cup T)$ :
Given $s \in S \subseteq(S \cup T)$, $x s=0$ so $x \in \operatorname{Ann}(S)$. $\checkmark$
Given $t \in T \subseteq(S \cup T), x t=0$ so $x \in \operatorname{Ann}(T) . \checkmark$
Thus, $x \in \operatorname{Ann}(S) \cap \operatorname{Ann}(T)$, so $\operatorname{Ann}(S) \cap \operatorname{Ann}(T) \supseteq \operatorname{Ann}(S \cup T) . \checkmark$
Thus $\operatorname{Ann}(S) \cap \operatorname{Ann}(T)=\operatorname{Ann}(S \cup T)$ as desired. QED

