Nonparametric Test Procedures

1 Introduction to Nonparametrics

Nonparametric tests do not require that samples come from populations with normal distributions
or any other specific distribution. Hence they are sometimes called distribution-free tests. They may
have other more easily satisfied assumptions - such as requiring that the population distribution is
symmetric. In general, when the parametric assumptions are satisfied, it is better to use parametric
test procedures. However, nonparametric test procedures are a valuable tool to use when those
assumptions are not satisfied, and most have pretty high efficiency relative to the corresponding
parametric test when the parametric assumptions are satisfied. This means you usually don’t lose
much testing power if you swap to the nonparametric test even when not necessary. The exception
is the sign test, discussed below. The following table discusses the parametric and corresponding
nonparametric tests we have covered so far. (z-test, t-test, F-test refer to the parametric test
statistics used in each procedure).

Parameter | Parametric Test ‘ Nonparametric Test
s One sample z-test Exact Binomial
1 OT [1g One sample t-test | Sign test or Wilcoxon Signed-Ranks test
1 — 2 Two sample t-test Wilcoxon Rank-Sum test
ANOVA F-test Kruskal-Wallis

As a note on p-values before we proceed, details of computations of p-values are left out of this
discussion. Usually these are found by considering the distribution of the test statistic across all
possible permutations of ranks, etc. in each case. It is very tedious to do by hand, which is why
there are established tables for it, or why we rely on the computer to do it.

The examples throughout these notes are brief - I do not list the hypotheses or check the assump-
tions explicitly. Assume o = .05. You should be able to determine the hypotheses as we discuss
the examples as well as make a decision based on the reported p-value.

Finally, you are NOT expected to know how to do these tests by hand or even the R command. At
most, you will be asked which nonparametric test to use (see chart above) and to make a decision
based on a p-value from one of these tests (decision rule still applies). You will NOT have to list
these assumptions, etc. I am providing some of the details as a reference for you if you want to
employ these in your project or some other future time.

References:
Devore and Peck. Fifth edition. Has short descriptions of each test. Was removed to an optional
online chapter in our Sixth edition.
Triola. Elementary Statistics. Has a chapter on nonparametrics - no discussion of binomial.
Hollander and Wolfe. Nonparametric Statistical Methods. In-depth explanation of each of these
and more.



2 Exact Binomial Test for a Population Proportion =

Situation: You observe n (fixed) number of trials with only 2 possible outcomes per trial.
Hypotheses: Same forms as for a population proportion z-test

Necessary Assumptions: (Combined with n fixed these are the conditions for a binomial)
1. The trials must be independent.
2. The two outcomes can be considered successes and failures.
3. Probability of success is constant for all trials.

Test Procedure: Let B be the number of successes in your sample. B is used as the test statistic.
The p-value is computed based on the Binomial distribution as the probability of observing B
successes or more extreme in the direction of your alternative for a given probability of success in
the null hypothesis, denoted .

Function in R: binom.test(x, n, p = 0.5, alternative = c¢(”two.sided”, "less”, ”greater”))
x is the number of successes, n is the number of trials, p= hypothesized probability of success (can
be changed) = m, and pick the appropriate alternative

Benefits: This allows you to do an exact binomial test for small samples where nmy and n(1 — )
are not both > 10. You can also do an exact binomial test for larger samples and see how close the
z-test approximation is to the exact p-value.

Example: You want to test whether or not a coin is fair by flipping it. Imagine you only have
time for 10 flips and 8 come up heads. Is this enough information to conclude that the coin is not
fair?

binom.test(8,10,p=.5,alternative=“two.sided” )
Exact binomial test
data: 8 and 10
number of successes = 8, number of trials = 10, p-value = 0.1094
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.4439045 0.9747893
sample estimates:
probability of success
0.8

3 Sign Test for a Population Median

Can use as paired test on the differences

Situation: You observe n observations from a population or 2n observations which are paired



leaving you with n differences after the differences have been computed.
Hypotheses: Same forms as for p (or ug) except p is replaced by median - 6 (or 6).

Necessary Assumptions:
1. The n observations or n differences are independent.
2. The observations or differences come from a continuous population which has a median 8 and
which is symmetric.

Test Procedure: Compute the differences as observations minus hypothesized value or as the
differences (given a specific subtraction order) if paired. Count the number of positive differences
- that is the test statistic. An equal number of positive and negative differences is expected if the
null hypothesis is true. Compute the p-value as the probability you observe your number of positive
differences or more extreme using binomial probabilities.

Function in R: No direct function, but can be done using binomial probabilities. Adjustments do
need to be made for upper/lower /two-tailed tests.

Benefits/Issues: Simplistic idea. Not used often because it has low relative efficiency compared
to parametric test. You lose all information about the magnitude of the differences, which can be
very important. The Signed-Rank test is a better choice.

For example, for the sign test, both of the following data sets would have the same test statistic
of 3. But you lose all information about spread.
Data set 1: -1, -.5,-.25, 1, 2, 3
Data set 2: -1, -.5, -.25, 2, 6, 100

4 Wilcoxon Signed-Rank Test for a Population Median

Can use as paired test on the differences

Situation: You observe n observations from a population or 2n observations which are paired
leaving you with n differences after the differences have been computed.

Hypotheses: Same forms as for p (or ug) except p is replaced by median - 6 (or 6).

Necessary Assumptions:
1. The n observations or n differences are independent.
2. The observations or differences come from a continuous population which has a median 8 and
which is symmetric.

Test Procedure: If dealing with observations, the test computes observations minus hypothesized
6 to get differences. Starting with the differences (if the median really is 0, these differences should
be symmetric around 0), compute their absolute values. Rank each difference by absolute value



(small to large) and add up the ranks of the differences which are positive as your test statistic.
Example: If your observations are 4, 14, 19, 30, 59 and 6 is hypothesized to be 25, the test first
computes the differences 4-25, 14-25, 19-25, 30-25, 59-25. Those differences are -21, -11, -6, 5, 34.
The ranked absolute values of the differences are 4,3,2,1, and 5 respectively. The sums of the ranks
for the positive differences are 1+5=6. The test then finds the probability of getting that test
statistic or something more extreme.

(1%

Function in R: wilcox.test(x,y,paired=F or T,alternative=“" mu=hypothesized value (default 0))
If doing a one-sample test for 1, you would run wilcox.test (x,mu=hyp value, alternative = “two.sided”)
and fill in the value for hypothesized value and change alternative to match what you have.

If doing a one-sample test for pg, you would run wilcox.test(x,y,paired=T,alternative = “two.sided”)
and change the alternative to match what you have. x and y are the before/after scores or whatever
that you want the differences computed between.

Benefits: Does not lose all information about magnitude of differences. Has high relative efficiency
compared to parametric test.

Example: The paired example we did in class on spending amounts comparing actual and bud-
geted amounts did not satisfy the normal distribution assumption for the population. In that
situation, you might try to do a nonparametric test due to assumption worries (even with n=42).
Below is another example paired test where the qq-plot looked very bad, but also had a very small
sample size, n=15. For this example, the p-value in the parametric test was .04934, but there are
major concerns about assumptions being violated.

x=firm, y=audit
wilcox.test(x, y, paired = TRUE, alternative = “greater”)

Wilcoxon signed rank test with continuity correction

data: x and y

V = 97.5, p-value = 0.01771

alternative hypothesis: true location shift is greater than 0

Warning message:

In wilcox.test.default(x, y, paired = TRUE, alternative = “greater”) :
cannot compute exact p-value with ties

There are some ties with ranks that appear here, and the output lets you know that the p-values
are therefore approximate.

5 Wilcoxon Rank-Sum Test for a difference in two Population
Means

Can also be done using the Mann-Whitney U statistic
Situation: You obtain n+m observations from two groups and you want to compare their medians.

Hypotheses: This is a little different than anything we have seen. In probability, there is some-
thing called a distribution function and this test tests for equality of the distribution functions



explicitly. However, it is equivalent to say that it tests for the equality of population medians in-
stead of means (which was the parametric test), with hypotheses now in terms of medians as 61 — 5.

Necessary Assumptions:
1. The samples from each populations were random samples.
2. The samples were independent.
3. Both populations are continuous.

Test Procedure: Sort the combined observations and compute their ranks. The test statistic is
the sum of ranks of observations from the second sample. Compute p-value accordingly. Note
that the expected value of the test statistic here depends on the sample sizes - you would expect
different values depending on how many observations were in each sample. This is less intuitive
than expecting a zero difference like in the sign test.

Function in R: wilcox.test(x,y,alternative = )
x and y are the two sets of observations (do not need to be same length), and set alternative as
appropriate.

Benefits: Does not require parametric assumptions. Keeps information about magnitude by using
combined rank values. Has high relative efficiency compared to parametric test.

Example: Salamander data:
Assume instead of 35 male and 42 female salamanders as before we only had 4 males and 6 females
with length measurements as below. We perform a test to see if females are longer than males
based on medians (note, putting females first means > in the alternative).
females=c(59.66,71.64,61.38,67.96,63.56,64.23)
males=c(62.49,59.04,58.49,62.39)
wilcox.test(females,males,alternative=“greater”)
Wilcoxon rank sum test
data: females and males
W = 20, p-value = 0.05714
alternative hypothesis: true location shift is greater than 0

Here is the parametric test on just these 10 combined observations, just so you can see the
difference:
t.test(females,males,alternative= “greater”)
Welch Two Sample t-test
data: females and males
t = 1.9801, df = 7.579, p-value = 0.04252
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.2236468 Inf
sample estimates:
mean of x mean of y
64.73833 60.60250



6 Nonparametric ANOVA - Kruskal-Wallis for General Alterna-
tives

Situation: You have n total observations from k populations (i.e. k samples) and you want to
compare their medians. (It’s actually a bit more general than that but that is enough detail to get
the gist of it).

Hypotheses: Same forms as ANOVA, just with u; replaced by 6; for medians.

Necessary Assumptions:
1. The k samples were independent.
2. Each sample was a random sample.
3. The populations are related by at most a shift in distribution function (this means the popula-
tions differ at most by their medians but other characteristics are the same).

Test Procedure: Combine all samples. Rank all observations. Compute the sum of ranks for each
sample. Compute average rank of each sample. Combine that information into a test statistic and
compute p-value.

Function in R: For an example with k = 3, let z,y, z be the list of observations in each sample.
Then run
kruskal.test (list(x,y,z))
No information about alternatives is required since this is like an ANOVA.

Benefits: You don’t need the requirement that all populations are normally distributed, though
you still need spreads to be somewhat similar. More advanced versions for directed alternatives
(called umbrella hypotheses) exist. Has pretty high relative efficiency compared to ANOVA, but
less efficient than either of the Wilcoxon methods compared to their parametric counterparts.

Example: Flammability study from class
Five labs are being compared based on a clothing flammability test. Each lab tested 11 samples of
the same fabric.
labl1=¢(2.9,3.1,3.1,3.7,3.1,4.2,3.7,3.9,3.1,3.0,2.9)
lab2=c(2.7,3.4,3.6,3.2,4.0,4.1,3.8,3.8,4.3,3.4,3.3)
lab3=c(3.3,3.3,3.5,3.5,2.8,2.8,3.2,2.8,3.8,3.5,3.8)
labd=c(3.3,3.2,3.4,2.7,2.7,3.3,2.9,3.2,2.9,2.6,2.8)
labb=c(4.1,4.1,3.7,4.2,3.1,3.5,2.8,3.5,3.7,3.5,3.9)
kruskal.test(list(labl,lab2,1ab3,lab4,lab5))
Kruskal-Wallis rank sum test
data: list(labl, lab2, lab3, lab4, lab5)
Kruskal-Wallis chi-squared = 14.2622, df = 4, p-value = 0.006504



