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• Eigenvalues and eigenvectors
• Hermitian transformations
• Function spaces
• Hilbert Space
• Hermitian Operators 



Review

α β =atb 

Last class we discussed the general characteristics 
of vector spaces and defined the inner product.

We found that for vector spaces with finite 
dimension, n, we could represent the state vectors 
as n dimensional vectors and transformations by n x 
n matrices.

We explored a number of characteristics of this 
representation and defined the Hermitian conjugate 
of a matrix to be the conjugate transpose.

The inner product in an n-dimensional space was 
found to be



Eigenvectors and eigenvalues
If a linear transform leaves a particular non-null vector α  unaltered 
(multiplied only by a constant, complex coefficient)  
 

αλα =T  
 
we say the α  is an eigenvector of the transform T and that the complex 
number, λ is called an eigenvalue.  
 
e.g. – for rotations about the x̂  axis a vector along x̂  is unchanged.  
Therefore it is an eigenvector of this rotation operator. 
 
 In a complex vector space, every linear transform has such vectors.  
For a particular basis set we may write the matrix equation 
 

Ta = λa 
 

(T - λΙ) a = 0 
 



The characteristic equation
If (T - λΙ) has an inverse, then (T - λΙ)-1 (T - λΙ) a = (T - λΙ)-1 0 
 

I a = 0 
 

Which implies that a = 0. (not too interesting). 
 
If (T - λΙ) does not have an inverse then 
 

det(T - λΙ) = 0.  (assuming 0a ≠ ). 
 

i.e. 
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This is a polynomial of order n in λ, called the characteristic equation.  



Determination of the eigenvalues
and eigenvectors

The characteristic equation looks something like 
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There are between 1 and n eigenvalues, λ that will solve the equation. 
 
For each eigenvalue, one can then return to the equation αλα =T  to 
determine the eigenvector(s) that correspond to the particular eigenvalue. 
 
You will practice this in problem A.26. 
 
 



Hermitian Transformations
For a matrix, we defined the Hermitian conjugate of a matrix to be the 
conjugate transpose  
 

∗= TT t ~
  

 
(reminder: I am using t for the dagger) 
 
More generally, for any linear operator we define the Hermitian conjugate 
operator by the relation 
 

βαβα TT t ≡  
 



Note consistency with matrix definition 
of Hermitian operator 

ba)(T tt =

t
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Recall for matrices (ST)t = TtSt

βαβα tTT === ba)(TTba ttt



Properties of constants in the inner 
product

 
Note     βαβα cc =   
 
(from linearity property of the inner product) 
 

and     
*αββα cc = .  

 
(one of the defining characteristics of the inner product). 
 ( ) *** αβαββα ccc ==  

 
(linearity again and the complex conjugate of a product). 

 
βαβα *cc =



Properties of Hermitian 
Transformations

1. The eigenvalues of a Hermitian Transform are real. 
 

Proof:  Let λ be an eigenvalue of T s.t. αλα =T with 0≠α . 
 
Then ααλλαααα ==T . 

If T is Hermitian then ααλαααααα *=== TTT t  
 
So if λλλαα ⇒=⇒≠ *0 is real. 



2.  The eigenvectors of a Hermitian transformation 
belonging to distinct eigenvalues are orthogonal.

βαβαβα TTT t ==   (Hermitian) 
 

Proof:  Let αλα AT =  and let βλβ BT =  
 

βαλβλαβα BBT ==  
 

βαλβαλβα *
AAT ==  

 
βαλβα AT =   (eigenvalues are real) 

 
So βαλβαλ AB =  
  

But AB λλ ≠ , so βα  = 0, i.e. they are orthogonal. 



3.  The eigenvectors of a Hermitian 
transformation span the space.

If all n roots of the characteristic equation are distinct, then 2 implies that 
these constitute n mutually orthogonal eigenvectors.  This implies that they 
must span the space. 

 
Also true when the roots are not distinct (i.e. when we have degenerate 
eigenvalues).  We will not prove this. 



Function Spaces

Function spaces  are a type of vector space. 

Vectors correspond to complex functions of x. 
 

Inner products correspond to integrals. 
 

Linear transforms correspond to operators. 
 



Do functions satisfy the 
requirements of a “vector space”?

Is the sum of two functions a function? (Is it in the space?) 
 

Is there a null?  (f(x) = 0). 
 

Is cf(x) a function?  (is it in the space?) 
 

 
We will encounter many classes of functions, but whatever class we have must 
satisfy the above conditions. 



Inner product in a function space
We define the inner product for a function space to be 
 

( ) ( )dxxgxfgf ∫≡ *  
 

Does this satisfy the three conditions of the inner product? 
 

i) Is *βααβ = ? 

 
ii) Is 0≥αα  ?  Does it only = 0 when α  = 0? 

 
iii) Is ( ) γαβαγβα cbcb +=+ ? 



Hilbert Space
In Physics, we restrict ourselves to square-integrable functions.   
 
i.e. Functions such that ∞<∫ dxxf 2)( .  This is Hilbert Space (a subset of all 
function spaces). 
 
Quantum Mechanical wave functions live in Hilbert Space. 
 

. 

Note:  If our functions are square integrable, then the Schwartz inequality 
suggests that the inner product of two functions is also finite. 
 

ggffgf ≤
2 . 

 



A complete orthonormal set of 
functions

A set of functions { }nf is said to be orthonormal if mnnm ff δ= . 
 

 
The set is complete if any function f(x) can be expressed as a linear 
combination of the the set. 
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The generalization of Fourier’s 
trick

Notice what happens when we take the inner product of any function with 
one of the orthonormal basis functions. 
 

( ) ( ) ( ) ( ) ( )xfxfcxfcxfxfxf nm
n

n
n

nnmm ∑∑
∞

=

∞

=

==
11

)(  

 

( ) mn
n

nm cxfxf δ∑
∞

=

=
1

)(

 
( ) )(xfxfc mm =  
 
 

So the projections on to the basis set are again given by Fourier’s trick. 
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