Solutions to the Analysis problems on the Comprehensive Examination of January 27,2012

1. [4 points] State the Axiom of Completeness (also known as the Axiom of Continuity for the Real Numbers or Axiom C).

Solution: Every nonempty set of real numbers that is bounded above has a least upper bound.
2. (a) [6 points] The standard triangle inquality states that $|x+y| \leq|x|+|y|$ for $x, y \in \mathbb{R}$. Assuming this result, give a careful proof that if $x_{1}, \ldots, x_{n} \in \mathbb{R}, n \geq 2$, then $\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.

Solution: We can prove this by induction on n.
Base Case: When $n=2$, we already know $|x+y| \leq|x|+|y|$. Thus the inequality is true when $n=2$.
Now suppose the inequality holds for some n; then we have $\left|x_{1}+\cdots+x_{n}\right| \leq$ $\left|x_{1}\right|+\cdots+\left|x_{n}\right|$. Now we can show that the same is true for $n+1$:

$$
\left|x_{1}+\cdots+x_{n+1}\right| \leq\left|x_{1}+\cdots+x_{n}\right|+\left|x_{n+1}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|+\left|x_{n+1}\right| .
$$

Therefore the inquality is true for $n+1$ as well. Combining the base case and the inductive step we can conclude that if $x_{1}, \ldots, x_{n} \in \mathbb{R}, n \geq 2$, then $\left|x_{1}+\cdots+x_{n}\right| \leq$ $\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.
(b) [6 points] Recall that a function $f: S \rightarrow \mathbb{R}$ is bounded if there is $M \in \mathbb{R}$ with $|f(x)| \leq M$ for all $x \in S$. Now suppose we have bounded functions f_{1}, \ldots, f_{n} : $S \rightarrow \mathbb{R}, n \geq 2$, and define $f_{1}+\cdots+f_{n}: S \rightarrow \mathbb{R}$ by $\left(f_{1}+\cdots+f_{n}\right)(x)=$ $f_{1}(x)+\cdots+f_{n}(x)$ for $x \in S$. Prove that $f_{1}+\cdots+f_{n}$ is bounded.

Solution: Because f_{1}, \ldots, f_{n} are bounded, there exist $M_{1}, \ldots, M_{n} \in \mathbb{R}$ such that $\left|f_{k}(x)\right| \leq M_{k}$ for all $x \in S$ and $1 \leq k \leq n$. Let $M=M_{1}+\cdots+M_{n}$. By the theorem we just proved in (a) we have:

$$
\begin{aligned}
\left|\left(f_{1}+\cdots+f_{n}\right)(x)\right| & =\left|f_{1}(x)+\cdots+f_{n}(x)\right| \\
& \leq\left|f_{1}(x)\right|+\cdots+\left|f_{n}(x)\right| \leq M_{1}+\cdots+M_{n}=M
\end{aligned}
$$

for all $x \in S$. Hence the function $f_{1}+\cdots+f_{n}$ is bounded by M.
3. Consider the sequence of functions defined by $f_{n}(x)=2+(1+1 / n) x$ for $n \geq 1$. This sequence converges pointwise to $f(x)=2+x$.
(a) [7 points] Prove that the sequence converges uniformly to f on $[0,10]$.

Solution: To say that the sequence converges uniformly to f on $[0,10]$ means that for any $\epsilon>0$ there is some $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ is true for any $n \geq N, x \in[0,10]$.
The key observation is that $\left|f_{n}(x)-f(x)\right|=\left|\frac{x}{n}\right| \leq \frac{10}{n}$ for $x \in[0,10]$. This makes it easy to find an N that satisfies our conditions given $\epsilon>0$. Here is the proof. Given any $\epsilon>0$, we can choose $N \in \mathbb{N}$ with $N>\frac{10}{\epsilon}$. It follows that for $n \geq N$ and $x \in[0,10]$,

$$
\left|f_{n}(x)-f(x)\right|=|2+(1+1 / n) x-(2+x)|=\left|\frac{x}{n}\right| \leq \frac{10}{n} \leq \frac{10}{N}<\frac{10}{\frac{10}{\epsilon}}=\epsilon
$$

Therefore, the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f on $[0,10]$
(b) [7 points] Prove that the sequence does not converge uniformly on $[0, \infty)$.

Solution: We will prove that the negation of uniform convergence is true. Therefore our goal is to show that there exists $\epsilon>0$ such that for every $N \in \mathbb{N}$, we can find some $x \in[0, \infty)$ satisfying $\left|f_{N}(x)-f(x)\right|>\epsilon$. Below we give the proof.
Pick $\epsilon=1$. For any $N \in \mathbb{N}$, let $x=N+1$. Then we have

$$
\left|f_{N}(x)-f(x)\right|=|2+(1+1 / N) x-(2+x)|=\left|\frac{x}{N}\right|=\left|\frac{N+1}{N}\right|>1
$$

This shows that the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ does not converge uniformly on $[0, \infty)$.
4. [10 points] Suppose that we have continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$. Prove that the composition $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is also continuous.

Solution: First note that because $g: \mathbb{R} \rightarrow \mathbb{R}$, we know that $g(x) \in \mathbb{R}$ for $x \in \mathbb{R}$. Therefore $(f \circ g)(x)=f(g(x)) \in \mathbb{R}$, so $f \circ g$ is a function from \mathbb{R} to \mathbb{R}.
To prove that $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, we give an $\epsilon-\delta$ proof that it is continuous at every $c \in \mathbb{R}$. So fix $c \in \mathbb{R}$.
Suppose $\epsilon>0$. Since $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, it is continuous at $g(c)$. Thus, we can find a $\delta_{1}>0$ such that

$$
|x-g(c)|<\delta_{1} \quad \Rightarrow \quad|f(x)-f(g(c))|<\epsilon
$$

Because $g: \mathbb{R} \rightarrow \mathbb{R}$ is also continuous, it is continuous at c. Using the above δ_{1}, we can find a $\delta_{2}>0$ such that

$$
|x-c|<\delta_{2} \Rightarrow|g(x)-g(c)|<\delta_{1} .
$$

Combining the above implications, we see that

$$
|x-c|<\delta_{2} \Rightarrow|g(x)-g(c)|<\delta_{1} \Rightarrow|f(g(x))-f(g(c))|<\epsilon .
$$

Therefore $f(g(x))=(f \circ g)(x)$ is continuous at c. Since this is true for all $c \in \mathbb{R}$, we conclude that $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

