
Solutions to the Analysis problems on the Comprehensive Examination of Jan-
uary 27, 2012

1. [4 points] State the Axiom of Completeness (also known as the Axiom of Continuity
for the Real Numbers or Axiom C).

Solution: Every nonempty set of real numbers that is bounded above has a least
upper bound.

2. (a) [6 points] The standard triangle inquality states that |x+y| ≤ |x|+|y| for x, y ∈ R.
Assuming this result, give a careful proof that if x1, . . . , xn ∈ R, n ≥ 2, then
|x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|.

Solution: We can prove this by induction on n.

Base Case: When n = 2, we already know |x+ y| ≤ |x|+ |y|. Thus the inequality
is true when n = 2.

Now suppose the inequality holds for some n; then we have |x1 + · · · + xn| ≤
|x1|+ · · ·+ |xn|. Now we can show that the same is true for n+ 1:

|x1 + · · ·+ xn+1| ≤ |x1 + · · ·+ xn|+ |xn+1| ≤ |x1|+ · · ·+ |xn|+ |xn+1|.

Therefore the inquality is true for n+ 1 as well. Combining the base case and the
inductive step we can conclude that if x1, . . . , xn ∈ R, n ≥ 2, then |x1+ · · ·+xn| ≤
|x1|+ · · ·+ |xn|.

(b) [6 points] Recall that a function f : S → R is bounded if there is M ∈ R with
|f(x)| ≤ M for all x ∈ S. Now suppose we have bounded functions f1, . . . , fn :
S → R, n ≥ 2, and define f1 + · · · + fn : S → R by (f1 + · · · + fn)(x) =
f1(x) + · · ·+ fn(x) for x ∈ S. Prove that f1 + · · ·+ fn is bounded.

Solution: Because f1, . . . , fn are bounded, there exist M1, . . . ,Mn ∈ R such that
|fk(x)| ≤ Mk for all x ∈ S and 1 ≤ k ≤ n. Let M = M1 + · · · + Mn. By the
theorem we just proved in (a) we have:

|(f1 + · · ·+ fn)(x)| = |f1(x) + · · ·+ fn(x)|
≤ |f1(x)|+ · · ·+ |fn(x)| ≤M1 + · · ·+Mn = M

for all x ∈ S. Hence the function f1 + · · ·+ fn is bounded by M .

3. Consider the sequence of functions defined by fn(x) = 2 + (1 + 1/n)x for n ≥ 1. This
sequence converges pointwise to f(x) = 2 + x.

(a) [7 points] Prove that the sequence converges uniformly to f on [0, 10].
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Solution: To say that the sequence converges uniformly to f on [0, 10] means
that for any ε > 0 there is some N ∈ N such that |fn(x) − f(x)| < ε is true for
any n ≥ N , x ∈ [0, 10].

The key observation is that |fn(x)− f(x)| = |x
n
| ≤ 10

n
for x ∈ [0, 10]. This makes

it easy to find an N that satisfies our conditions given ε > 0. Here is the proof.

Given any ε > 0, we can choose N ∈ N with N > 10
ε

. It follows that for n ≥ N
and x ∈ [0, 10],

|fn(x)− f(x)| = |2 + (1 + 1/n)x− (2 + x)| =
∣∣∣x
n

∣∣∣ ≤ 10

n
≤ 10

N
<

10
10
ε

= ε.

Therefore, the sequence {fn}∞n=1 converges uniformly to f on [0,10]

(b) [7 points] Prove that the sequence does not converge uniformly on [0,∞).

Solution: We will prove that the negation of uniform convergence is true. There-
fore our goal is to show that there exists ε > 0 such that for every N ∈ N, we can
find some x ∈ [0,∞) satisfying |fN(x)− f(x)| > ε. Below we give the proof.

Pick ε = 1. For any N ∈ N, let x = N + 1. Then we have

|fN(x)− f(x)| =
∣∣2 + (1 + 1/N)x− (2 + x)

∣∣ =
∣∣∣ x
N

∣∣∣ =
∣∣∣N + 1

N

∣∣∣ > 1.

This shows that the sequence {fn}∞n=1 does not converge uniformly on [0,∞).

4. [10 points] Suppose that we have continuous functions f, g : R → R. Prove that the
composition f ◦ g : R→ R is also continuous.

Solution: First note that because g : R → R, we know that g(x) ∈ R for x ∈ R.
Therefore (f ◦ g)(x) = f(g(x)) ∈ R, so f ◦ g is a function from R to R.

To prove that f ◦ g : R → R is continuous, we give an ε-δ proof that it is continuous
at every c ∈ R. So fix c ∈ R.

Suppose ε > 0. Since f : R → R is continuous, it is continuous at g(c). Thus, we can
find a δ1 > 0 such that

|x− g(c)| < δ1 ⇒ |f(x)− f(g(c))| < ε.

Because g : R → R is also continuous, it is continuous at c. Using the above δ1, we
can find a δ2 > 0 such that

|x− c| < δ2 ⇒ |g(x)− g(c)| < δ1.

Combining the above implications, we see that

|x− c| < δ2 ⇒ |g(x)− g(c)| < δ1 ⇒ |f(g(x))− f(g(c))| < ε.

Therefore f(g(x)) = (f ◦ g)(x) is continuous at c. Since this is true for all c ∈ R, we
conclude that f ◦ g : R→ R is continuous.
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