BioChem 330 - Course Outline

- Metabolism and Bioenergetics (II)
 - ENZYME CATALYSIS:
 - kinetic constants k_{cat}, K_m
 - Catalytic strategies, the serine proteases
 - CATABOLISM (breakdown)
 - Carbohydrates
 - Glycolysis
 - Tricarboxylic Acid Cycle
 - Electron Transport
 - Chemiosmosis and ATPase
 - Fatty acids and amino acids

Oxidation of Fats Provide Metabolic Energy

 Lipids are a large class of glycerol derivatives

 Triacylglycerols comprise 90% of our dietary fats

1-Palmitoyl-2,3-dioleoyl-glycerol

© 2008 John Wiley & Sons, Inc. All rights reserved.

• C₁₈ monounsaturated fatty acid is oleic acid

Digestion of Fats Starts with Peristalsis.....

•Dilemma: dietary fat is not very soluble, but must be digested by soluble enzymes

•Enzymes access the lipids at water/lipid interfaces that are favored by the actions of peristalsis

Figure 20-4

Absorption of Fat Occurs in small Intestines

 $R_1 = OH$

 $R_1 = H$

$$R_2 = OH$$
 Cholic acid Chenodeoxycholic acid $R_2 = NH - CH_2 - COOH$ Glycocholic acid Glycochenodeoxycholic acid $R_2 = NH - CH_2 - CH_2 - SO_3H$ Taurocholic acid Taurochenodeoxycholic acid

Cholic acid

Chenodeoxycholic acid Glycocholic acid Glycochenodeoxycholic acid **Bile Acids:**

are derived from cholesterol

are secreted into small intestines from liver through bile duct

Help free fatty acids to be absorbed by intestinal mucosa

© 2008 John Wiley & Sons, Inc. All rights reserved.

Absorption of Fat Occurs in small intestines

Intestinal fatty acid binding protein (I-FABP)

FA fills the strand gap in the top beta sheet

Binding motif called a beta clam structure

Interfacial Enzymatic hydrolysis of TAG ester bond

Strategy 1: Pancreatic Lipase

hydrolysis of TAG

Specific to positions 1,3

Access to binding site (oxyanion hole) regulated by co-lipase

catalytic triad at active site

From Nature 362, 793 (1993). Reproduced with permission.

Figure 20-2

Interfacial Enzymatic hydrolysis of TAG ester bond

Strategy 2: Phospholipase A2

Enzyme binds to micelle, opening up a channel through which it can bind to hydrolyze a phospholipid

Transportation of fats in lymph and blood.....

 Exogenous pathways for dietary fats and cholesterol

•Endogenous pathways for fats, cholesterol moving internally from one place to another

TAGs are transported within lipoprotein vessicles

Table 20-1 Characteristics of the Major Classes of Lipoproteins in Human Plasma

	Chylomicrons	VLDL	IDL	LDL	HDL
Density (g·cm ⁻³)	<0.95	<1.006	1.006–1.019	1.019–1.063	1.063-1.210
Particle diameter (Å)	750-12,000	300-800	250-350	180-250	50-120
Particle mass (kD)	400,000	10,000-80,000	5000-10,000	2300	175-360
% Protein ^a	1.5-2.5	5–10	15-20	20-25	40-55
% Phospholipids ^a	7–9	15–20	22	15-20	20-35
% Free cholesterol ^a	1-3	5–10	8	7–10	3-4
% Triacylglycerols ^b	84-89	50-65	22	7–10	3–5
% Cholesteryl esters ^b	3–5	10–15	30	35-40	12
Major apolipoproteins	A-I, A-II, B-48, C-I,	B-100, C-I, C-II,	B-100, C-I, C-II,	B-100	A-I, A-II, C-I, C-II,
	C-II, C-III, E	C-III, E	C-III, E		C-III, D, E

^aSurface components

^bCore lipids.

^{© 2008} John Wiley & Sons, Inc. All rights reserved.

Transportation of fats in lymph and blood.....

Lipoproteins are micellar assemblies

LDL: Nonpolar core; TAG, cholesterol esters

Amphiphillic surface: protein (i.e. apolipoprotein B-100), phospholipid, cholesterol

As size ↑ the density ↓

Transportation of fats in lymph and blood.....

Apolipoprotein A1

Occurs in chylomicrons/ HDL

Protein is loosely associated with the micelle

243 amino acid 29 kD peptide

Assembles as homotetramer

Amphipathic nature of helix

Figure 20-6a,b

Uptake of LDL by Endocytosis.....

