
Solutions to the Analysis problems on the Comprehensive Examination of Jan-
uary 28, 2011

1. (a) State the Axiom of Completeness (also known as the Axiom of Continuity for the
Real Numbers or Axiom C).

Solution: Every nonempty set of real numbers that is bounded above has a least
upper bound.

(b) Use the Axiom of Completeness to prove that an increasing bounded above se-
quence of real numbers converges.

Solution: Let (an) be an increasing bounded above sequence with an ∈ R for all
n ∈ N. Then by the Axiom of Completeness, we can find

s = sup{an | n ∈ N}.

Now we show that s is the limit of this sequence.

Suppose ε > 0. By the definition of supremum, s − ε is not an upper bound for
{an | n ∈ N}. Therefore we can find an N ∈ N such that s − ε < aN . Because
an is an increasing sequence, an ≥ aN for n ≥ N . By the definition of s, we also
have an ≤ s < s + ε. Hence s − ε < an < s + ε for all n ≥ N . Hence for every
ε > 0 there exists an N ∈ N such that |an − s| < ε for all n ≥ N . By definition,
the sequence (an) converges to s.

2. Consider the sequence defined by a1 =
√

3 and an+1 =
√

3 + an for n ≥ 1.

(a) Prove that an < an+1 for all n ≥ 1.

Solution: We prove this by induction on n.

When n = 1, a1 =
√

3, a2 =
√

3 +
√

3 >
√

3 = a1 > 0, so the statement holds
when n = 1.

Suppose that for some n we have 0 < an < an+1. Then

an < an+1

⇒ 3 + an < 3 + an+1

⇒
√

3 + an <
√

3 + an+1 (Note 3 + an > 3 > 0)

⇒ an+1 < an+2,

where the last line follows by the recursive definition of the sequence.

Therefore an < an+1 for all n ≥ 1.

(b) Prove that an < 1 +
√

3 for all n ≥ 1

Solution: Again we use induction on n.

Clearly the statement is true when n = 1.
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Now suppose an < 1 +
√

3 for some n ∈ N. Then

(?) an+1 =
√

3 + an <

√
3 + (1 +

√
3) =

√
4 +
√

3.

Hence it suffices to show that

(??)

√
4 +
√

3 < 1 +
√

3.

Since both sides are positive, (??) is equivalent to 4 +
√

3 < (1 +
√

3)2, which in
turn is equivalent to

4 +
√

3 < 1 + 2
√

3 + 3 = 4 + 2
√

3.

This is clearly true, so (??) is true. Combining this with (?) gives an+1 < 1 +
√

3
as desired.

Therefore an < 1 +
√

3 for all n ≥ 1.

(c) Explain why lim
n→∞

an exists and find the limit.

By (a) we know (an) is an increasing sequence and by (b) we know this sequence
is bounded above. Therefore by the Monotone Convergence Theorem (an) con-
verges. Therefore lim

n→∞
an exists.

We show that lim
n→∞

an = 1+
√
13

2
.

Suppose lim
n→∞

an = L. Standard properties of limits imply that lim
n→∞

a2n = L2.

Then

L2 = lim
n→∞

a2n = lim
n→∞

a2n+1 = lim
n→∞

(3 + an) = lim
n→∞

3 + lim
n→∞

an = 3 + L.

Solving the equation L2 − L − 3 = 0 gives L = 1±
√
13

2
. Since

√
3 < an < 1 +

√
3

for all n ≥ 1, we must choose the positive answer, hence lim
n→∞

an = L = 1+
√
13

2
.

3. Consider the sequence of functions on [0, π] defined by fn(x) = (sin x)n for x ∈ [0, π]
and n ≥ 1.

(a) Compute f(x) = lim
n→∞

fn(x) for all x ∈ [0, π].

Solution:

When x ∈ [0, π
2
) ∪ (π

2
, π], 0 ≤ sinx < 1, so fn(x) = (sin x)n → 0 as n→∞.

Now consider when x = π
2
. When x = π

2
, fn(x) = (sin π

2
)n = 1, hence fn(x) → 1

as n→∞. Combining both we get the function

f(x) =

{
0 if x ∈ [0, π

2
) ∪ (π

2
, π],

1 if x = π
2
,

which satisfies f(x) = lim
n→∞

fn(x) for all x ∈ [0, π].
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(b) Does {fn(x)}∞n=1 converge uniformly to f(x)? Explain your reasoning.

Solution 1: Suppose that {fn(x)}∞n=1 converges uniformly to f(x). A theorem
proved in class states that a uniform limit of continuous functions is continuous.
Since each fn(x) is continuous, this theorem and uniform convergence would imply
that f(x) would be continuous. But the formula for f(x) from part (a) shows that
f(x) is not continuous at x = π

2
. Hence uniform convergence must fail.

Solution 2: Let ε = 1/2. For each N ∈ N, because fN(x) is continuous on [0, π],
the range of fN(x) is [0, 1] by the Intermediate Value Theorem. Hence we can
find xN ∈ [0, π] such that fN(xN) = (sinxN)N = 1/2. Note that xN 6= π/2 since
fN(π/2) = 1, so f(xN) = 0.

Thus for every N ∈ N, we do not have |fN(x)−f(x)| < 1/2 for all x ∈ [0, π] since
fN(xN) = 1/2 and f(xN) = 0. Hence f(x) does not satisfy the conditions for
uniform convergence. We conclude that {fn(x)}∞n=1 does not converge uniformly
to f(x) on x ∈ [0, π].

4. (a) State the definition of lim
x→0

f(x) = L.

Solution: lim
x→0

f(x) = L if for all ε > 0, there exists a δ > 0 such that whenever

0 < |x| < δ, it follows that |f(x)− L| < ε.

(b) Assume that lim
x→0

f(x) = L for some real number L > 0. Prove that there is δ > 0

with the property that f(x) > 1
2
L for all x ∈ (−δ, δ), x 6= 0.

Solution: Let ε = L
2
. By the definition given in (a), we know there exists a δ > 0

such that whenever 0 < |x| < δ, it follows that |f(x)− L| < ε = L
2
. Then for all

x ∈ (−δ, δ), x 6= 0 we get 1
2
L < f(x) < 3

2
L. In particular, we have f(x) > 1

2
L for

x ∈ (−δ, δ), x 6= 0. This is exactly what we wanted to prove.
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