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1. Let G be a group, and let H ⊆ G be a subgroup. Let L be the set of left cosets of H
in G, and let R be the set of right cosets of H in G. That is,

L = {aH : a ∈ G}, and R = {Ha : a ∈ G}.

Define the function f : L → R by f(aH) = Ha−1.

(a) Prove that f is well-defined.

Solution: Given a, b ∈ G such that aH = bH , we show that f(aH) = f(bH), or
equivalently Ha−1 = Hb−1. First, note that aH = bH ⇒ a−1b ∈ H . But then
a−1(b−1)−1 = a−1b ∈ H , so Ha−1 = Hb−1 as desired. QED

(b) Prove that f is onto.

Solution: Given Ha ∈ R, f((a−1)H) = H(a−1)−1 = Ha so f is onto.X

(Note: you may not assume that L or R is finite, and you may not assume that H is

normal in G.)

2. Fix an integer n ≥ 2, and write Sn for the permutation group on n letters. Let

φ : Sn → G

be a homomorphism, where G is a group of odd order. (I.e., G is a finite group with
an odd number of elements.)

(a) Prove that every transposition (i.e., 2-cycle) τ ∈ Sn is in ker φ.

That is, prove that φ(τ) = e.

Solution: Given a transposition τ , trivially o(τ) = 2. Thus since φ is a homo-
morphism, eG = φ(eSn) = φ(τ 2) = φ(τ)φ(τ), so either φ(τ) = eG or o(φ(τ)) = 2.
But if o(φ(τ)) = 2, then 2

∣

∣|G|, which is a contradiction because |G| is odd. Thus,
φ(τ) = eG.X

(b) Prove that φ is the trivial homomorphism; i.e., prove that for all σ ∈ Sn, we have
φ(σ) = e.

Solution: We know that Sn is generated by transpositions. Given σ ∈ Sn,
write σ as a product of transpositions σ = τ1τ2 · · · τm. Then by part (a), φ(σ) =
φ(τ1)φ(τ2) · · ·φ(τm) = (eG)

m = eG as desired. QED

3. Let R be a ring with unity, and let I ⊆ R be a subset.

(a) Define what it means for I to be an ideal of R.

Solution: I ⊆ R is an ideal of R if (I,+) is a subgroup of (R,+) and ∀x ∈ I, r ∈
R, xr ∈ I and rx ∈ I.



(b) Recall that a unit is an element u ∈ R that has a multiplicative inverse v ∈ R.

If I is an ideal and contains a unit, prove that I = R.

Solution: Let u ∈ I be a unit in I. Since I ⊆ R, it suffices to show that R ⊆ I.
So, given r ∈ R, by property of ideals ru ∈ I. But then also by property of ideals,
r = (ru)u−1 ∈ I as desired. QED

4. Let R = Z[x] be the ring of polynomials (in one variable) with integer coefficients. Note
that the constant polynomial 2 and the degree one polynomial x are both elements of
R. Define

I = {2f + xg : f, g ∈ R}.

(a) Prove that I is an ideal of R.

Solution: First, we show that (I,+) is a subgroup of (R,+):
(I nonempty) Let h(x) = 2 + x. Then h ∈ I (with f(x) = g(x) = 1).X
(I closed under +) Given h1, h2 ∈ I, h1 = 2f1 + xg1 and h2 = 2f2 + xg2 for some
f1, f2, g1, g2 ∈ R. Then h1 + h2 = 2(f1 + f2) + x(g1 + g2) so h1 + h2 ∈ I.X
(I closed under negatives) Given h ∈ I, h = 2f + xg for some f, g ∈ R. Then
−h = 2(−f) + x(−g) so −h ∈ I.X
Thus (I,+) is a subgroup of (R,+) X
Now given ζ ∈ R, h ∈ I, h = 2f + xg for some f, g ∈ R. Then ζh = hζ =
2(fζ) + x(gζ) so ζh, hζ ∈ I.X
Thus, I is an ideal of R. QED

(b) Prove that

I = {a0 + a1x+ a2x
2 + · · ·+ anx

n : ai ∈ Z and a0 is even}.

That is, prove that I consists of exactly those polynomials in R with even constant
term.

Solution: (⊆): Given h ∈ I, h = 2f + xg for some f, g ∈ R. Letting f(x) =
b0 + b1x + b2x

2 + · · · + bnx
m and g(x) = c0 + c1x + c2x

2 + · · · + cnx
k, we have

h(x) = 2b0 + (2b1 + c0)x + H(x), where H(x) is some polynomial in which each
term has degree at least 2. Thus h has an even constant term.X
(⊇): Given h(x) = a0 + a1x + a2x

2 + · · · + anx
n ∈ R such that a0 is even,

let f(x) = a0/2 (note f(x) ∈ R because a0 is even so a0/2 ∈ Z) and g(x) =
a1+a2x+a3x

2+ · · ·+anx
n−1 (note g ∈ R). Then h = 2f +xg, f, g ∈ R so h ∈ I

as desired.X
Thus I = {a0 + a1x+ a2x

2 + · · ·+ anx
n : ai ∈ Z and a0 is even} as desired. QED
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