Solutions to the Algebra problems on the Comprehensive Examination of February 2, 2007

1. Let G be a group, and let $H \subseteq G$ be a subgroup. Let L be the set of left cosets of H in G, and let R be the set of right cosets of H in G. That is,

$$
L=\{a H: a \in G\}, \quad \text { and } \quad R=\{H a: a \in G\} .
$$

Define the function $f: L \rightarrow R$ by $f(a H)=H a^{-1}$.
(a) Prove that f is well-defined.

Solution: Given $a, b \in G$ such that $a H=b H$, we show that $f(a H)=f(b H)$, or equivalently $H a^{-1}=H b^{-1}$. First, note that $a H=b H \Rightarrow a^{-1} b \in H$. But then $a^{-1}\left(b^{-1}\right)^{-1}=a^{-1} b \in H$, so $H a^{-1}=H b^{-1}$ as desired. QED
(b) Prove that f is onto.

Solution: Given $H a \in R, f\left(\left(a^{-1}\right) H\right)=H\left(a^{-1}\right)^{-1}=H a$ so f is onto. \checkmark
(Note: you may not assume that L or R is finite, and you may not assume that H is normal in G.)
2. Fix an integer $n \geq 2$, and write S_{n} for the permutation group on n letters. Let

$$
\phi: S_{n} \rightarrow G
$$

be a homomorphism, where G is a group of odd order. (I.e., G is a finite group with an odd number of elements.)
(a) Prove that every transposition (i.e., 2-cycle) $\tau \in S_{n}$ is in $\operatorname{ker} \phi$.

That is, prove that $\phi(\tau)=e$.
Solution: Given a transposition τ, trivially $o(\tau)=2$. Thus since ϕ is a homomorphism, $e_{G}=\phi\left(e_{S n}\right)=\phi\left(\tau^{2}\right)=\phi(\tau) \phi(\tau)$, so either $\phi(\tau)=e_{G}$ or $o(\phi(\tau))=2$. But if $o(\phi(\tau))=2$, then $2||G|$, which is a contradiction because $| G \mid$ is odd. Thus, $\phi(\tau)=e_{G} \cdot \checkmark$
(b) Prove that ϕ is the trivial homomorphism; i.e., prove that for all $\sigma \in S_{n}$, we have $\phi(\sigma)=e$.
Solution: We know that S_{n} is generated by transpositions. Given $\sigma \in S_{n}$, write σ as a product of transpositions $\sigma=\tau_{1} \tau_{2} \cdots \tau_{m}$. Then by part (a), $\phi(\sigma)=$ $\phi\left(\tau_{1}\right) \phi\left(\tau_{2}\right) \cdots \phi\left(\tau_{m}\right)=\left(e_{G}\right)^{m}=e_{G}$ as desired. QED
3. Let R be a ring with unity, and let $I \subseteq R$ be a subset.
(a) Define what it means for I to be an ideal of R.

Solution: $I \subseteq R$ is an ideal of R if $(I,+)$ is a subgroup of $(R,+)$ and $\forall x \in I, r \in$ $R, x r \in I$ and $r x \in I$.
(b) Recall that a unit is an element $u \in R$ that has a multiplicative inverse $v \in R$. If I is an ideal and contains a unit, prove that $I=R$.

Solution: Let $u \in I$ be a unit in I. Since $I \subseteq R$, it suffices to show that $R \subseteq I$. So, given $r \in R$, by property of ideals $r u \in I$. But then also by property of ideals, $r=(r u) u^{-1} \in I$ as desired. QED
4. Let $R=\mathbb{Z}[x]$ be the ring of polynomials (in one variable) with integer coefficients. Note that the constant polynomial 2 and the degree one polynomial x are both elements of R. Define

$$
I=\{2 f+x g: f, g \in R\} .
$$

(a) Prove that I is an ideal of R.

Solution: First, we show that $(I,+)$ is a subgroup of $(R,+)$:
(I nonempty) Let $h(x)=2+x$. Then $h \in I$ (with $f(x)=g(x)=1$). \checkmark
(I closed under +) Given $h_{1}, h_{2} \in I, h_{1}=2 f_{1}+x g_{1}$ and $h_{2}=2 f_{2}+x g_{2}$ for some $f_{1}, f_{2}, g_{1}, g_{2} \in R$. Then $h_{1}+h_{2}=2\left(f_{1}+f_{2}\right)+x\left(g_{1}+g_{2}\right)$ so $h_{1}+h_{2} \in I . \checkmark$
(I closed under negatives) Given $h \in I, h=2 f+x g$ for some $f, g \in R$. Then $-h=2(-f)+x(-g)$ so $-h \in I . \checkmark$
Thus $(I,+)$ is a subgroup of $(R,+) \checkmark$
Now given $\zeta \in R, h \in I, h=2 f+x g$ for some $f, g \in R$. Then $\zeta h=h \zeta=$ $2(f \zeta)+x(g \zeta)$ so $\zeta h, h \zeta \in I . \checkmark$
Thus, I is an ideal of R. QED
(b) Prove that

$$
I=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{Z} \text { and } a_{0} \text { is even }\right\} .
$$

That is, prove that I consists of exactly those polynomials in R with even constant term.

Solution: (\subseteq): Given $h \in I, h=2 f+x g$ for some $f, g \in R$. Letting $f(x)=$ $b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{m}$ and $g(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{k}$, we have $h(x)=2 b_{0}+\left(2 b_{1}+c_{0}\right) x+H(x)$, where $H(x)$ is some polynomial in which each term has degree at least 2 . Thus h has an even constant term. \checkmark
(\supseteq) : Given $h(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in R$ such that a_{0} is even, let $f(x)=a_{0} / 2$ (note $f(x) \in R$ because a_{0} is even so $a_{0} / 2 \in \mathbb{Z}$) and $g(x)=$ $a_{1}+a_{2} x+a_{3} x^{2}+\cdots+a_{n} x^{n-1}$ (note $g \in R$). Then $h=2 f+x g, f, g \in R$ so $h \in I$ as desired. \checkmark
Thus $I=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{i} \in \mathbb{Z}\right.$ and a_{0} is even $\}$ as desired. QED

