Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of February 1, 2008

Solutions to Problems 1-5 and 10 are omitted since they involve topics no longer covered on the Comprehensive Examination.
6. Evaluate the following integrals:
(a) $\int_{0}^{1} \int_{2 x}^{2} e^{\left(y^{2}\right)} d y d x$.

Solution: We need to switch the order of integration. The region of integration lies between $y=2 x$ and $y=2$ for $0 \leq x \leq 1$. This is the same as the region between $x=0$ and $x=y / 2$ for $0 \leq y \leq 2$. Thus

$$
\begin{aligned}
\int_{0}^{1} \int_{2 x}^{2} e^{\left(y^{2}\right)} d y d x & =\int_{0}^{2} \int_{0}^{y / 2} e^{\left(y^{2}\right)} d x d y \\
& =\left.\int_{0}^{2} x e^{y^{2}}\right|_{x=0} ^{y / 2} d y=\frac{1}{2} \int_{0}^{2} y e^{y^{2}} d y \\
& =\left.\frac{1}{4} e^{y^{2}}\right|_{0} ^{2}=\frac{1}{4}\left(e^{4}-1\right)
\end{aligned}
$$

where we used the substitution $u=y^{2}, d u=2 y d y$.
(b) $\int_{C}\left(e^{x}+y^{3}\right) d x+\left(6 y^{2} x+x^{3}\right) d y$, where C is the circle $x^{2}+y^{2}=1$, oriented counterclockwise.

Solution: Apply Greens's Theorem, letting D be the domain enclosed by C:

$$
\int_{C}\left(e^{x}+y^{3}\right) d x+\left(6 y^{2} x+x^{3}\right) d y=\iint_{D}\left(6 y^{2}+3 x^{2}-3 y^{2}\right) d A=3 \iint_{D}\left(y^{2}+x^{2}\right) d A
$$

Now integrate on D using polar coordinates, easy enough since D is just a circle of radius 1 and the integrand turns into r^{2} :

$$
3 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cdot r d r d \theta=3(2 \pi)\left(\left.\frac{r^{4}}{4}\right|_{r=0} ^{1}\right)=\frac{3 \pi}{2}
$$

7. Find the volume of the region that is inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution: We'll be working with spherical coordinates here. The inside-the-sphere constraint is pretty obvious: it just means that $\rho \leq 2$. The cone constraint is a bound on ϕ. To find the specific bound, it can be helpful to just consider the $x z$-plane.

Above the cone on that plane means that $z \geq x$, which converted to spherical means $\tan (\phi) \leq 1$, or $\phi \leq \pi / 4$. Any θ satisfies the constraints, so integrating:

$$
\begin{aligned}
V & =\iiint_{V} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =2 \pi\left(\left.\frac{\rho^{3}}{3}\right|_{0} ^{2}\right)\left(-\left.\cos (\phi)\right|_{0} ^{\pi / 4}\right) \\
& =\frac{16 \pi}{3}\left(1-\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

8. Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution: Use the definition of partial derivative:

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{\frac{h^{3}}{h^{2}+0^{2}}}{h}=\lim _{h \rightarrow 0} \frac{h^{3}}{h^{3}}=1 \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{\frac{0^{3}}{0^{2}+h^{2}}}{h}=\lim _{h \rightarrow 0} \frac{0}{h^{3}}=0
\end{aligned}
$$

(b) Use the definition of the directional derivative to find the directional derivative of f at $(0,0)$ in the direction $\vec{u}=(\sqrt{(2) / 2, ~} \sqrt{(2) / 2)}$.
Solution: From the definition of directional derivative,

$$
D_{\vec{u}}=\lim _{h \rightarrow 0} \frac{\frac{(h \sqrt{2} / 2)^{3}}{(h \sqrt{2} / 2)^{2}+(h \sqrt{2} / 2)^{2}}}{h}=\lim _{h \rightarrow 0} \frac{h^{3}}{h^{3}} \frac{(\sqrt{2} / 2)^{3}}{2(\sqrt{2} / 2)^{2}}=\frac{\sqrt{2}}{4}
$$

(c) Is f differentiable at $(0,0)$? Justify your answer.

Solution: Will not need to prove differentiability in the new comps.
9. Find the maximum value of the function $f(x, y)=x^{2} y$ on the ellipse $x^{2}+2 y^{2}=24$.

Solution: We use Lagrange multipliers here to find the max of $f(x, y)=x^{2} y$ with the constraint $g(x, y)=x^{2}+2 y^{2}=24$. To find the points to test, we solve the system
$\nabla f(x, y)=\lambda \nabla g(x, y)$ (so $2 x y=\lambda(2 x)$ and $\left.x^{2}=\lambda(4 y)\right)$ and $g(x, y)=24$. We'll break up the system into two cases here. If $x=0$, then clearly $y= \pm \sqrt{12}$. If $x \neq 0$, then from the first equation $y=\lambda$ so substituting into the second equation, $x^{2}=4 y^{2}$. We now substitute in for x in the last equation: $6 y^{2}=24$, which gives us $y= \pm 2$ and $x= \pm 4$ for four more critical points $(\pm 4, \pm 2)$. Now it is just a matter of plugging each of these 6 points into f, and we find that the maximum occurs at $(\pm 4,2)$ for a value of 32 .
11. Let

$$
A=\left(\begin{array}{rrr}
2 & 0 & -1 \\
3 & 0 & -5 \\
1 & 0 & 0
\end{array}\right)
$$

(a) Find all eigenvalues of A.

Solution: We want to find all possible $\lambda \in \mathbb{R}$ such that $\exists \vec{v} \neq \overrightarrow{0} \in \mathbb{R}^{3}$ such that $A \vec{v}=\lambda \vec{v}$, which means that the system $(A-\lambda I) \vec{v}=\overrightarrow{0}$ has a nontrivial solution. Thus, $A-\lambda I$ is non-invertible, or $\operatorname{det}(A-\lambda I)=0$. We use the recursive formula for the determinant to simplify the calculation:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =-0 \operatorname{det}\left(\begin{array}{ll}
3 & -5 \\
1 & -\lambda
\end{array}\right)+(-\lambda) \operatorname{det}\left(\begin{array}{cc}
2-\lambda & -1 \\
1 & -\lambda
\end{array}\right)-0 \operatorname{det}\left(\begin{array}{cc}
2-\lambda & -1 \\
1 & -\lambda
\end{array}\right) \\
& =-\lambda\left(\lambda^{2}-2 \lambda+1\right)=-\lambda(\lambda-1)^{2}
\end{aligned}
$$

Thus the eigenvalues of A are 0 and 1 .
(b) Find an invertible matrix P such that $P A P^{-1}$ is a diagonal matrix, or show that there is no such matrix P.

Solution: The eigenvalue 1 has algebraic multiplicity 2 , so let's start the diagonalization process there: if we don't get an eigenspace of dimension 2 , then we know A is not diagonalizable so we don't have to bother with the eigenvalue of 0 . Without further ado, we find the nullspace of $A-I$:

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
3 & -1 & -5 \\
1 & 0 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

There is only one free variable, which means that the nullspace of $(A-I)$ is only 1. Thus, the sum of the dimensions of the eigenspaces of A is 2 and not 3 , so A is not diagonalizable (that is, there is no P such that $P A P^{-1}$ is diagonal).
12. Suppose that u, v, and w are distinct vectors in a vector space V, and $\{u, v, w\}$ is linearly independent. Prove that $\{u+2 v, v+2 w, u+2 w\}$ is linearly independent.

Solution: Given α_{1}, α_{2}, and α_{3} in \mathbb{R} such that $\alpha_{1}(u+2 v)+\alpha_{2}(v+2 w)+\alpha_{3}(u+2 w)=0$, we can rearrange the terms to find that $\left(\alpha_{1}+\alpha_{3}\right) u+\left(2 \alpha_{1}+\alpha_{2}\right) v+\left(2 \alpha_{2}+2 \alpha_{3}\right)=0$.

Since $\{u, v, w\}$ is linearly independent, $\alpha_{1}+\alpha_{3}=0,2 \alpha_{1}+\alpha_{2}=0$, and $2 \alpha_{2}+2 \alpha_{3}=0$. We now find all possible solutions to that system by considering the nullspace of the matrix corresponding to the system:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 0 \\
0 & 2 & 2
\end{array}\right) \longrightarrow\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 2 & 2
\end{array}\right) \longrightarrow\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

So the matrix has a trivial nullspace! Thus $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$, so $\{u+2 v, v+2 w, u+2 w\}$ is linearly independent, as desired. QED
13. Suppose V, W, and Z are finite-dimensional vector spaces, $T: V \rightarrow W$ and $U: W \rightarrow Z$ are linear transformations, and T is onto.
(a) Prove that range $(U T)=\operatorname{range}(U)$.

Solution: \subseteq :
Given $z \in \operatorname{range}(U T)$, by definition of range $\exists v \in V$ such that $U \circ T(v)=z$. But then $U(T(v))=z$ so $z \in \operatorname{range}(U) . \checkmark$
?:
Given $z \in \operatorname{range}(U)$, by definition of range $\exists w \in W$ such that $U(w)=z$. But since T is onto, $\exists v \in V$ such that $T(v)=w$. Thus, $U \circ T(v)=z$ so $z \in \operatorname{range}(U T) . \checkmark$ Thus range $(U T)=\operatorname{range}(U)$ as desired. QED
(b) Prove that nullity $(U T)=\operatorname{nullity}(U)+\operatorname{nullity}(T)$.

Solution: We use the rank-nullity theorem; there are a lot of functions and vector spaces flying around, so we start by defining some variables. Let $a=\operatorname{nullity}(U)$, $b=\operatorname{nullity}(T), c=\operatorname{nullity}(U T), \alpha=\operatorname{dim}(V), \beta=\operatorname{dim}(W), q=\operatorname{rank}(U), r=$ $\operatorname{rank}(T)$, and $s=\operatorname{rank}(U T)$. Since T is onto, $r=\beta$ and since we already showed that $\operatorname{range}(U T)=\operatorname{range}(U), s=q$. Applying the rank-nullity theorem to U, T, and $U T$ respectively and using those two substitutions, we find:

$$
\begin{aligned}
& \beta=q+a \\
& \alpha=\beta+b \\
& \alpha=q+c
\end{aligned}
$$

Solving for c and substituting, we find:

$$
c=\alpha-q=(\beta+b)-q=(q+a)+b-q=a+b
$$

as desired. QED

