
Solutions to the Calculus and Linear Algebra problems on the Comprehensive
Examination of February 1, 2008

Solutions to Problems 1-5 and 10 are omitted since they involve topics no longer covered on
the Comprehensive Examination.

6. Evaluate the following integrals:

(a)

∫ 1

0

∫ 2

2x

e(y
2) dy dx.

Solution: We need to switch the order of integration. The region of integration
lies between y = 2x and y = 2 for 0 ≤ x ≤ 1. This is the same as the region
between x = 0 and x = y/2 for 0 ≤ y ≤ 2. Thus∫ 1

0

∫ 2

2x

e(y
2) dy dx =

∫ 2

0

∫ y/2

0

e(y
2) dx dy

=

∫ 2

0

xey
2
∣∣∣y/2
x=0

dy =
1

2

∫ 2

0

yey
2

dy

=
1

4
ey

2
∣∣∣2
0

=
1

4
(e4 − 1)

where we used the substitution u = y2, du = 2ydy.

(b)
∫
C

(ex + y3)dx+ (6y2x+ x3)dy, where C is the circle x2+y2 = 1, oriented counter-
clockwise.

Solution: Apply Greens’s Theorem, letting D be the domain enclosed by C:∫
C

(ex + y3)dx+ (6y2x+ x3)dy =

∫∫
D

(6y2 + 3x2 − 3y2) dA = 3

∫∫
D

(y2 + x2) dA

Now integrate on D using polar coordinates, easy enough since D is just a circle
of radius 1 and the integrand turns into r2:

3

∫ 2π

0

∫ 1

0

r2 · r dr dθ = 3(2π)

(
r4

4

∣∣∣1
r=0

)
=

3π

2

7. Find the volume of the region that is inside the sphere x2 + y2 + z2 = 4 and above the
cone z =

√
x2 + y2.

Solution: We’ll be working with spherical coordinates here. The inside-the-sphere
constraint is pretty obvious: it just means that ρ ≤ 2. The cone constraint is a bound
on φ. To find the specific bound, it can be helpful to just consider the xz-plane.
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Above the cone on that plane means that z ≥ x, which converted to spherical means
tan(φ) ≤ 1, or φ ≤ π/4. Any θ satisfies the constraints, so integrating:

V =

∫∫∫
V

dV

=

∫ 2π

0

∫ π/4

0

∫ 2

0

ρ2 sin(φ) dρ dφ dθ

= 2π
(ρ3

3

∣∣∣2
0

)(
− cos(φ)

∣∣∣π/4
0

)
=

16π

3

(
1−
√

2

2

)

8. Consider the function

f(x, y) =


x3

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Find fx(0, 0) and fy(0, 0).

Solution: Use the definition of partial derivative:

fx(0, 0) = lim
h→0

h3

h2+02

h
= lim

h→0

h3

h3
= 1

fy(0, 0) = lim
h→0

03

02+h2

h
= lim

h→0

0

h3
= 0

(b) Use the definition of the directional derivative to find the directional derivative of
f at (0, 0) in the direction ~u = (

√
(2)/2,

√
(2)/2).

Solution: From the definition of directional derivative,

D~u = lim
h→0

(h
√
2/2)3

(h
√
2/2)2+(h

√
2/2)2

h
= lim

h→0

h3

h3
(
√

2/2)3

2(
√

2/2)2
=

√
2

4

(c) Is f differentiable at (0,0)? Justify your answer.

Solution: Will not need to prove differentiability in the new comps.

9. Find the maximum value of the function f(x, y) = x2y on the ellipse x2 + 2y2 = 24.

Solution: We use Lagrange multipliers here to find the max of f(x, y) = x2y with the
constraint g(x, y) = x2 + 2y2 = 24. To find the points to test, we solve the system
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∇f(x, y) = λ∇g(x, y) (so 2xy = λ(2x) and x2 = λ(4y)) and g(x, y) = 24. We’ll break
up the system into two cases here. If x = 0, then clearly y = ±

√
12. If x 6= 0, then

from the first equation y = λ so substituting into the second equation, x2 = 4y2. We
now substitute in for x in the last equation: 6y2 = 24, which gives us y = ±2 and
x = ±4 for four more critical points (±4,±2). Now it is just a matter of plugging each
of these 6 points into f , and we find that the maximum occurs at (±4, 2) for a value
of 32.

11. Let

A =

2 0 −1
3 0 −5
1 0 0

 .

(a) Find all eigenvalues of A.

Solution: We want to find all possible λ ∈ R such that ∃~v 6= ~0 ∈ R3 such that
A~v = λ~v, which means that the system (A − λI)~v = ~0 has a nontrivial solution.
Thus, A− λI is non-invertible, or det(A− λI) = 0. We use the recursive formula
for the determinant to simplify the calculation:

det(A− λI) = −0 det

(
3 −5
1 −λ

)
+ (−λ) det

(
2− λ −1

1 −λ

)
− 0 det

(
2− λ −1

1 −λ

)
= −λ(λ2 − 2λ+ 1) = −λ(λ− 1)2

Thus the eigenvalues of A are 0 and 1.

(b) Find an invertible matrix P such that PAP−1 is a diagonal matrix, or show that
there is no such matrix P .

Solution: The eigenvalue 1 has algebraic multiplicity 2, so let’s start the diag-
onalization process there: if we don’t get an eigenspace of dimension 2, then we
know A is not diagonalizable so we don’t have to bother with the eigenvalue of 0.
Without further ado, we find the nullspace of A− I:1 0 −1

3 −1 −5
1 0 −1

 −→
1 0 −1

0 1 2
0 0 0


There is only one free variable, which means that the nullspace of (A− I) is only
1. Thus, the sum of the dimensions of the eigenspaces of A is 2 and not 3, so A
is not diagonalizable (that is, there is no P such that PAP−1 is diagonal).

12. Suppose that u, v, and w are distinct vectors in a vector space V , and {u, v, w} is
linearly independent. Prove that {u+ 2v, v + 2w, u+ 2w} is linearly independent.

Solution: Given α1,α2, and α3 in R such that α1(u+2v)+α2(v+2w)+α3(u+2w) = 0,
we can rearrange the terms to find that (α1 + α3)u + (2α1 + α2)v + (2α2 + 2α3) = 0.
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Since {u, v, w} is linearly independent, α1 + α3 = 0, 2α1 + α2 = 0, and 2α2 + 2α3 = 0.
We now find all possible solutions to that system by considering the nullspace of the
matrix corresponding to the system:1 0 1

2 1 0
0 2 2

 −→
1 0 1

0 1 −2
0 2 2

 −→
1 0 1

0 1 −2
0 0 1

 −→
1 0 0

0 1 0
0 0 1


So the matrix has a trivial nullspace! Thus α1 = α2 = α3 = 0, so {u+2v, v+2w, u+2w}
is linearly independent, as desired. QED

13. Suppose V , W , and Z are finite-dimensional vector spaces, T : V → W and U : W → Z
are linear transformations, and T is onto.

(a) Prove that range(UT ) = range(U).

Solution: ⊆:
Given z ∈ range(UT ), by definition of range ∃v ∈ V such that U ◦ T (v) = z. But
then U(T (v)) = z so z ∈ range(U).X
⊇:
Given z ∈ range(U), by definition of range ∃w ∈ W such that U(w) = z. But since
T is onto, ∃v ∈ V such that T (v) = w. Thus, U ◦ T (v) = z so z ∈ range(UT ).X
Thus range(UT ) = range(U) as desired. QED

(b) Prove that nullity(UT ) = nullity(U)+nullity(T ).

Solution: We use the rank-nullity theorem; there are a lot of functions and vector
spaces flying around, so we start by defining some variables. Let a = nullity(U),
b = nullity(T ), c = nullity(UT ), α = dim(V ), β = dim(W ), q = rank(U), r =
rank(T ), and s = rank(UT ). Since T is onto, r = β and since we already showed
that range(UT ) = range(U), s = q. Applying the rank-nullity theorem to U , T ,
and UT respectively and using those two substitutions, we find:

β = q + a

α = β + b

α = q + c

Solving for c and substituting, we find:

c = α− q = (β + b)− q = (q + a) + b− q = a+ b

as desired. QED
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