Solutions to the Calculus and Linear Algebra problems on the Comprehensive
Examination of February 1, 2008

Solutions to Problems 1-5 and 10 are omitted since they involve topics no longer covered on
the Comprehensive Examination.

6. Evaluate the following integrals:
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Solution: We need to switch the order of integration. The region of integration
lies between y = 2x and y = 2 for 0 < x < 1. This is the same as the region
between x = 0 and x = y/2 for 0 < y < 2. Thus
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where we used the substitution u = 2, du = 2ydy.

Jo (€" +y?)dx + (6y*x 4 2°)dy, where C'is the circle #2+y® = 1, oriented counter-
clockwise.

Solution: Apply Greens’s Theorem, letting D be the domain enclosed by C:
/ (e 4+ y*)dx + (6y°z + 2°)dy = //(6y2 +32% — 3y*)dA = 3//(3/2 + %) dA
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Now integrate on D using polar coordinates, easy enough since D is just a circle
of radius 1 and the integrand turns into r%:
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7. Find the volume of the region that is inside the sphere 22 + y? 4+ 22 = 4 and above the
cone z = \/x? + 12

Solution: We’'ll be working with spherical coordinates here. The inside-the-sphere
constraint is pretty obvious: it just means that p < 2. The cone constraint is a bound
on ¢. To find the specific bound, it can be helpful to just consider the zz-plane.



Above the cone on that plane means that z > x, which converted to spherical means
tan(¢) < 1, or ¢ < 7/4. Any 0 satisfies the constraints, so integrating:
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8. Consider the function

(a) Find f,(0,0) and f,(0,0).

Solution: Use the definition of partial derivative:
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(b) Use the definition of the directional derivative to find the directional derivative of
f at (0,0) in the direction @ = (1/(2)/2,/(2)/2).

Solution: From the definition of directional derivative,
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(c) Is f differentiable at (0,0)7 Justify your answer.

Solution: Will not need to prove differentiability in the new comps.

9. Find the maximum value of the function f(z,y) = x?y on the ellipse 2 + 2y* = 24.

Solution: We use Lagrange multipliers here to find the max of f(x,y) = x*y with the
constraint g(x,y) = x? + 2y*> = 24. To find the points to test, we solve the system
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Vf(z,y) = AVg(z,y) (so 2zy = A\(2z) and 2? = \(4y)) and g(z,y) = 24. We'll break
up the system into two cases here. If x = 0, then clearly y = +v/12. If z # 0, then
from the first equation y = \ so substituting into the second equation, z? = 4y%. We
now substitute in for z in the last equation: 6y* = 24, which gives us y = £2 and
x = %4 for four more critical points (4, +2). Now it is just a matter of plugging each
of these 6 points into f, and we find that the maximum occurs at (44, 2) for a value
of 32.

11. Let

(a)

2 0 -1
A=13 0 =5
10 0

Find all eigenvalues of A.

Solution: We want to find all possible A € R such that 37 # 0 € R? such that
AT = AU, which means that the system (A — A\I)@ = 0 has a nontrivial solution.
Thus, A — A is non-invertible, or det(A — AI) = 0. We use the recursive formula
for the determinant to simplify the calculation:

3 =5 2—-X —1 2—X -1
det(A — AI) = —0det (1 _>\> + (=) det ( 1 _)\) — 0det < 1 _)\>
= - AN =22+ 1) = -A(A—1)?

Thus the eigenvalues of A are 0 and 1.

Find an invertible matrix P such that PAP~! is a diagonal matrix, or show that
there is no such matrix P.

Solution: The eigenvalue 1 has algebraic multiplicity 2, so let’s start the diag-
onalization process there: if we don’t get an eigenspace of dimension 2, then we
know A is not diagonalizable so we don’t have to bother with the eigenvalue of 0.
Without further ado, we find the nullspace of A — I:

1 0 -1 1 0 -1
3 -1 -5 — |0 1 2
1 0 -1 00 O

There is only one free variable, which means that the nullspace of (A — I) is only
1. Thus, the sum of the dimensions of the eigenspaces of A is 2 and not 3, so A
is not diagonalizable (that is, there is no P such that PAP~! is diagonal).

12. Suppose that u, v, and w are distinct vectors in a vector space V, and {u,v,w} is
linearly independent. Prove that {u + 2v,v + 2w, u + 2w} is linearly independent.

Solution: Given ay,a2, and a3 in R such that a; (u+2v)+as(v+2w) +az(u+2w) = 0,
we can rearrange the terms to find that (a; + ag)u + (201 + ag)v + (202 + 2a3) = 0.
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13.

Since {u, v, w} is linearly independent, ay + a3 = 0, 2a3 + s = 0, and 2as + 2a3 = 0.
We now find all possible solutions to that system by considering the nullspace of the
matrix corresponding to the system:

1 01 1 0 1 10 1 1 00
210)]—101 -2]—1(01 =21 —1{0 10
0 2 2 02 2 00 1 0 01

So the matrix has a trivial nullspace! Thus a; = s = a3 = 0, so {u+2v, v+2w, u+2w}
is linearly independent, as desired. QED

Suppose V', W, and Z are finite-dimensional vector spaces, T : V — Wand U : W — Z
are linear transformations, and 7" is onto.

(a) Prove that range(UT) = range(U).

Solution: C:

Given z € range(UT), by definition of range Jv € V such that U o T'(v) = z. But
then U(T'(v)) = z so z € range(U).v'

o

Given z € range(U), by definition of range Jw € W such that U(w) = z. But since
T is onto, Jv € V such that T'(v) = w. Thus, U o T(v) = 2z so z € range(UT).v’
Thus range(UT) = range(U) as desired. QED

(b) Prove that nullity(UT') = nullity (U )+nullity (7).

Solution: We use the rank-nullity theorem; there are a lot of functions and vector
spaces flying around, so we start by defining some variables. Let a = nullity(U),
b = nullity(T"), ¢ = nullity(UT), o = dim(V'), 8 = dim(W), ¢ = rank(U), r =
rank(7’), and s = rank(UT). Since T is onto, r = § and since we already showed
that range(UT') = range(U), s = ¢q. Applying the rank-nullity theorem to U, T,
and UT respectively and using those two substitutions, we find:

f=q+a
a=06+0b
a=q+c

Solving for ¢ and substituting, we find:
c=a—q=(B+b) —qg=(q+a)+b—g=a+b

as desired. QED



