Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 29, 2010

Solutions to Problems 1-5 and 10 are omitted since they involve topics no longer covered on the Comprehensive Examination.
6. [15 points] Evaluate the following integrals:
(a) $\int_{0}^{\ln 10} \int_{e^{x}}^{10} \frac{1}{\ln y} d y d x$.

Solution: We need to switch the order of integration. The region of integration over lies between $y=e^{x}$ and $y=10$ for $0 \leq x \leq \ln 10$. This is the same as the region between $x=0$ and $x=\ln y$ for $1 \leq y \leq 10$. Thus

$$
\begin{aligned}
\int_{0}^{\ln 10} \int_{e^{x}}^{10} \frac{1}{\ln y} d y d x & =\int_{1}^{10} \int_{0}^{\ln y} \frac{1}{\ln y} d x d y \\
& =\left.\int_{1}^{10} \frac{x}{\ln y}\right|_{x=0} ^{\ln y} d y=\int_{1}^{10} \frac{\ln y}{\ln y} d y \\
& =\int_{1}^{10} d y=9
\end{aligned}
$$

(b) $\int_{C} \cos \left(x^{2}\right) d x+\left(3 x y^{2}+x^{3}\right) d y$, where C is the circle $x^{2}+y^{2}=4$, oriented counterclockwise.

Solution: Just apply Greens's Theorem, letting D be the domain enclosed by C:

$$
\int_{C} \cos \left(x^{2}\right) d x+\left(3 x y^{2}+x^{3}\right) d y=\iint_{D}\left(3 y^{2}+3 x^{2}\right)-0 d A
$$

Now integrate on D using polar coordinates:

$$
\int_{0}^{2 \pi} \int_{0}^{2} 3 r^{2} \cdot r d r d \theta=3(2 \pi)\left(\left.\frac{r^{4}}{4}\right|_{r=0} ^{2}\right)=24 \pi
$$

7. [10 points] Find the volume of the region that is inside the sphere $x^{2}+y^{2}+z^{2}=4$ and above the cone $z=\sqrt{3 x^{2}+3 y^{2}}$.

Solution: We'll be working with spherical coordinates here. The inside-the-sphere constraint is pretty obvious: it just means that $\rho \leq 2$. The cone constraint is a bound on ϕ. To find the specific bound, it can be helpful to just consider the $x z$-plane. Above the cone on that plane means that $z \geq \sqrt{3} x$, which converted to spherical
means $\tan (\phi) \leq 1 / \sqrt{3}$, or $\phi \leq \arctan (1 / \sqrt{3})=\pi / 6$. Any θ satisfies the constraints, so integrating:

$$
\begin{aligned}
V & =\iiint_{V} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{2} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =2 \pi\left(\left.\frac{\rho^{3}}{3}\right|_{0} ^{2}\right)\left(-\left.\cos (\phi)\right|_{0} ^{\pi / 6}\right) \\
& =\frac{16 \pi}{3}(1-\cos (\pi / 6)) \\
& =\frac{16 \pi}{3}\left(1-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

To remember the cosine and tangent of $\pi / 6$, take an equilateral triangle of side 2 and divide it down the middle to get a right triangle with a 30° angle at top, adjacent $=\sqrt{3}$, opposite $=1$, and hypotenuse $=2$.
8. [12 points] Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{3}+4 x y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Find $f_{x}(0,0)$ and $f_{y}(0,0)$.

Solution: Use the definition of partial derivative:

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{\frac{h^{3}+4(h)\left(0^{2}\right)}{h^{2}+0^{2}}}{h}=\lim _{h \rightarrow 0} \frac{h^{3}}{h^{3}}=1 \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{\frac{0^{3}+4(0)\left(h^{2}\right)}{0^{2}+h^{2}}}{h}=\lim _{h \rightarrow 0} \frac{0}{h^{3}}=0
\end{aligned}
$$

(b) Is f differentiable at $(0,0)$? Justify your answer.

Solution: Will not need to prove differentiability in the new comps.
9. [10 points] Find the point on the plane $2 x-y+2 z=16$ that is nearest the origin.

Solution: We use Lagrange multipliers here to find the min of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ (distance from the origin) with the constraint $g(x, y)=2 x-y+2 z=16$. To find the points to test, we solve the system $\nabla f(x, y)=\lambda \nabla g(x, y)$ (so $2 x=\lambda(2), 2 y=\lambda(-1)$, and $2 z=\lambda(2))$ and $g(x, y)=16$. To solve this system, note that the first three constraints turn into $x=\lambda, y=-\lambda / 2$, and $z=\lambda$. Substituting into the last equation
gives $2 \lambda+\lambda / 2+2 \lambda=16 \Rightarrow \lambda=32 / 9$, which in turn gives the point $(32 / 9,-16 / 9,32 / 9)$ (for a distance of $256 / 9$). Note that this is the only critical point, so it must be the global minimum and not a max, since the distance from the origin at (for example) $\left(10^{10},-16,-10^{10}\right)$ is clearly much greater than $256 / 9$.
11. [8 points] Let \mathbf{A} be a square matrix and let α be a scalar that is NOT an eigenvalue of A. Suppose that μ is an eigenvalue for the matrix $\mathbf{B}=(\mathbf{A}-\alpha \mathbf{I})^{-1}$ with corresponding eigenvector \mathbf{v}. Prove that \mathbf{v} is also an eigenvector for \mathbf{A} and find a formula for the corresponding eigenvalue of \mathbf{A} in terms of μ and α.

Solution: We start with the given eigenvalue equation for $(\mathbf{A}-\alpha \mathbf{I})^{\mathbf{- 1}}$ and the solution proceeds from there:

$$
(\mathbf{A}-\alpha \mathbf{I})^{-\mathbf{1}} \mathbf{v}=\mu \mathbf{v} \Rightarrow(\mathbf{A}-\alpha \mathbf{I})(\mathbf{A}-\alpha \mathbf{I})^{-\mathbf{1}} \mathbf{v}=(\mathbf{A}-\alpha \mathbf{I}) \mu \mathbf{v} \Rightarrow \mathbf{v}=\mu \mathbf{A} \mathbf{v}-\mu \alpha \mathbf{I} \mathbf{v}
$$

The last equation implies in particular that $\mathbf{v}=\mu(\mathbf{A v}-\alpha \mathbf{I v})$, so that $\mu \neq 0$ since $\mathbf{v} \neq \mathbf{0}$ (eigenvectors are nonzero). Hence we can continue the implications

$$
\begin{aligned}
& \mathbf{v}=\mu \mathbf{A} \mathbf{v}-\mu \alpha \mathbf{I} \mathbf{v} \Rightarrow \mu \mathbf{A} \mathbf{v}=\mathbf{v}+\mu \alpha \mathbf{I} \mathbf{v} \Rightarrow \\
& \mu \mathbf{A} \mathbf{v}=(\mathbf{1}+\mu \alpha) \mathbf{v} \Rightarrow \mathbf{A} \mathbf{v}=(\mathbf{1} / \mu+\alpha) \mathbf{v}
\end{aligned}
$$

Thus \mathbf{v} is an eigenvector for \mathbf{A}, with eigenvalue $1 / \mu+\alpha$, as desired. QED
12. [10 points] Let $T: V \rightarrow V$ be a linear transformation on a finite dimensional vector space V. Suppose T is one-to-one (injective). Prove that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is also a basis for V.

Solution: First, we show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent.
Given scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that $\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{n} T\left(v_{n}\right)=0$:
Since T is linear, $T\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}\right)=\alpha_{1} T\left(v_{1}\right)+\cdots+\alpha_{n} T\left(v_{n}\right)=0$. Note that T is linear, so $T(0)$ also equals 0 . Since T is one-to-one, this means that $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0$. We know that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis, so it is linearly independent, which means $\alpha_{i}=0$ $\forall i \in\{1, \ldots, n\}$. But that's what we were trying to prove! So $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent, as desired.
Now note that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, then V has dimension n. Thus since $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a set of n linearly independent vectors, it is a basis for V (in an n-dimensional vector space, n vectors span \Leftrightarrow they are linearly independent \Leftrightarrow they form a basis). QED
13. [15 points] Let $T: P_{2} \rightarrow \mathbb{R}^{3}$, where $P_{2}=\left\{a+b t+c t^{2}: a, b, c \in \mathbb{R}\right\}$, be defined by

$$
T(p)=\left[\begin{array}{c}
p(1) \\
p(1) \\
p^{\prime}(1)
\end{array}\right]
$$

Here $p^{\prime}(t)$ is the derivative of the polynomial $p(t)$. Determine the null space (kernel) and range of T.

Solution: It helps to represent T using the basis $\left\{1, t, t^{2}\right\}$:

$$
T(p)=\left[\begin{array}{c}
a+b+c \\
a+b+c \\
b+2 c
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Now row reduce:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 1 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

This gives the nullspace span $\left(\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]\right)$ in \mathbb{R}^{3}, which corresponds to $\operatorname{span}\left(1-2 t+t^{2}\right)$ in P_{2}. Thus $1-2 t+t^{2}$ is a basis of the kernel of T.

Since T maps to \mathbb{R}^{3}, the range of T equals the column space of its matrix representation. The previous paragraph shows that the nullity is 1 , so the rank-nullity theorem tells us that the rank of the matrix is $3-1=2$. Thus the column space has dimension 2 . The first two columns are $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Since these are clearly linearly independent (neither is a multiple of the other), they form a basis for the column space. Hence they are a basis of the range of T.

